Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metabolism in anoxic permeable sediments is dominated by eukaryotic dark fermentation

This article has been updated

Abstract

Permeable sediments are common across continental shelves and are critical contributors to marine biogeochemical cycling. Organic matter in permeable sediments is dominated by microalgae, which as eukaryotes have different anaerobic metabolic pathways to bacteria and archaea. Here we present analyses of flow-through reactor experiments showing that dissolved inorganic carbon is produced predominantly as a result of anaerobic eukaryotic metabolic activity. In our experiments, anaerobic production of dissolved inorganic carbon was consistently accompanied by large dissolved H2 production rates, suggesting the presence of fermentation. The production of both dissolved inorganic carbon and H2 persisted following administration of broad spectrum bactericidal antibiotics, but ceased following treatment with metronidazole. Metronidazole inhibits the ferredoxin/hydrogenase pathway of fermentative eukaryotic H2 production, suggesting that pathway as the source of H2 and dissolved inorganic carbon production. Metabolomic analysis showed large increases in lipid production at the onset of anoxia, consistent with documented pathways of anoxic dark fermentation in microalgae. Cell counts revealed a predominance of microalgae in the sediments. H2 production was observed in dark anoxic cultures of diatoms (Fragilariopsis sp.) and a chlorophyte (Pyramimonas) isolated from the study site, substantiating the hypothesis that microalgae undertake fermentation. We conclude that microalgal dark fermentation could be an important energy-conserving pathway in permeable sediments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metabolism measured in FTR experiments.
Figure 2: H2 and metabolite production in permeable sediments.
Figure 3: Conceptual model of benthic algal metabolism in sand sediments.

Similar content being viewed by others

Change history

  • 14 December 2016

    In the version of this Article originally published, the middle bar in Fig. 1b was mislabelled and should have been labelled NO2-. This has been corrected in all versions of the Article.

References

  1. MacIntyre, H. L., Geider, R. J. & Miller, D. C. Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. 1. Distribution, abundance and primary production. Estuaries 19, 186–201 (1996).

    Article  Google Scholar 

  2. Jahnke, R. A., Nelson, J. R., Marinelli, R. L. & Eckman, J. E. Benthic flux of biogenic elements on the southeastern US continental shelf: influence of pore water advective transport and benthic microalgae. Cont. Shelf Res. 20, 109–127 (2000).

    Article  Google Scholar 

  3. de Jonge, V. N. Fluctuations in the organic carbon to chlorophyll a ratios for estuarine benthic diatom populations. Mar. Ecol. Progr. Ser. 2, 345–353 (1980).

    Article  Google Scholar 

  4. Light, B. B. J. Distribution and Primary Productivity of Microphytobenthos in Port Phillip Bay 67 (CSIRO Institute of Natural Resources and Environment, 1998).

    Google Scholar 

  5. Rusch, A., Forster, S. & Huettel, M. Bacteria, diatoms and detritus in an intertidal sandflat subject to advective transport across the water-sediment interface. Biogeochemistry 55, 1–27 (2001).

    Article  Google Scholar 

  6. Evrard, V., Cook, P. L. M., Veuger, B., Huettel, M. & Middelburg, J. J. Tracing incorporation and pathways of carbon and nitrogen in microbial communities of photic subtidal sands. Aquat. Microb. Ecol. 53, 257–269 (2008).

    Article  Google Scholar 

  7. Valdemarsen, T. & Kristensen, E. Degradation of dissolved organic monomers and short-chain fatty acids in sandy marine sediment by fermentation and sulfate reduction. Geochim. Cosmochim. Acta 74, 1593–1605 (2010).

    Article  Google Scholar 

  8. Boudreau, B. P. et al. Permeable marine sediments: overturning an old paradigm. Eos 82, 133–136 (2001).

    Google Scholar 

  9. Veuger, B. & van Oevelen, D. Long-term pigment dynamics and diatom survival in dark sediment. Limnol. Oceanogr. 56, 1065–1074 (2011).

    Article  Google Scholar 

  10. Kamp, A., de Beer, D., Nitsch, J. L., Lavik, G. & Stief, P. Diatoms respire nitrate to survive dark and anoxic conditions. Proc. Natl Acad. Sci. USA 108, 5649–5654 (2011).

    Article  Google Scholar 

  11. Zhang, L. P., Happe, T. & Melis, A. Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214, 552–561 (2002).

    Article  Google Scholar 

  12. Atteia, A., van Lis, R., Tielens, A. G. M. & Martin, W. F. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes. Biochim. Biophys. Acta 1827, 210–223 (2013).

    Article  Google Scholar 

  13. Evrard, V., Glud, R. N. & Cook, P. L. M. The kinetics of denitrification in permeable sediments. Biogeochemistry 113, 563–572 (2013).

    Article  Google Scholar 

  14. Marchant, H. K. et al. Coupled nitrification-denitrification leads to extensive N loss in subtidal permeable sediments. Limnol. Oceanogr. 61, 1033–1048 (2016).

    Article  Google Scholar 

  15. Pallud, C., Meile, C., Laverman, A. M., Abell, J. & Van Cappellen, P. The use of flow-through sediment reactors in biogeochemical kinetics: methodology and examples of applications. Mar. Chem. 106, 256–271 (2007).

    Article  Google Scholar 

  16. Cook, P. L. M., Wenzhofer, F., Glud, R. N., Janssen, F. & Huettel, M. Benthic solute exchange and carbon mineralization in two shallow subtidal sandy sediments: effect of advective pore-water exchange. Limnol. Oceanogr. 52, 1943–1963 (2007).

    Article  Google Scholar 

  17. Stief, P., Kamp, A. & de Beer, D. Role of diatoms in the spatial-temporal distribution of intracellular nitrate in intertidal sediment. PLoS ONE 8, e73257 (2013).

    Article  Google Scholar 

  18. Lutzhoft, H. C. H., Halling-Sorensen, B. & Jorgensen, S. E. Algal toxicity of antibacterial agents applied in Danish fish farming. Arch. Environ. Contam. Toxicol. 36, 1–6 (1999).

    Article  Google Scholar 

  19. Hoehler, T. M., Albert, D. B., Alperin, M. J. & Martens, C. S. Acetogenesis from CO2 in an anoxic marine sediment. Limnol. Oceanogr. 44, 662–667 (1999).

    Article  Google Scholar 

  20. Finke, N. & Jorgensen, B. B. Response of fermentation and sulfate reduction to experimental temperature changes in temperate and Arctic marine sediments. ISME J. 2, 815–829 (2008).

    Article  Google Scholar 

  21. Halling-Sorensen, B., Lutzhoft, H. C. H., Andersen, H. R. & Ingerslev, F. Environmental risk assessment of antibiotics: comparison of mecillinam, trimethoprim and ciprofloxacin. J. Antimicrob. Chemother. 46, 53–58 (2000).

    Article  Google Scholar 

  22. Robinson, A. A., Belden, J. B. & Lydy, M. J. Toxicity of fluoroquinolone antibiotics to aquatic organisms. Environ. Toxicol. Chem. 24, 423–430 (2005).

    Article  Google Scholar 

  23. Kummerer, K., Al-Ahmad, A. & Mersch-Sundermann, V. Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere 40, 701–710 (2000).

    Article  Google Scholar 

  24. Martins, N. et al. Ecotoxicological effects of ciprofloxacin on freshwater species: data integration and derivation of toxicity thresholds for risk assessment. Ecotoxicology 21, 1167–1176 (2012).

    Article  Google Scholar 

  25. Catalanotti, C., Yang, W., Posewitz, M. C. & Grossman, A. R. Fermentation metabolism and its evolution in algae. Front. Plant. Sci. 4, 150 (2013).

    Article  Google Scholar 

  26. Greening, C. et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 10, 761–777 (2016).

    Article  Google Scholar 

  27. Dubini, A., Mus, F., Seibert, M., Grossman, A. R. & Posewitz, M. C. Flexibility in anaerobic metabolism as revealed in a mutant of Chlamydomonas reinhardtii lacking hydrogenase activity. J. Biol. Chem. 284, 7201–7213 (2009).

    Article  Google Scholar 

  28. Lloyd, D. & Kristensen, B. Metronidazole inhibition of hydrogen production in vivo in drug sensitive and resistant strains of Trichomonas vaginalis. J. Gen. Microbiol. 131, 849–853 (1985).

    Google Scholar 

  29. Ohta, S., Miyamoto, K. & Miura, Y. Hydrogen evolution as a consumption mode of reducing equivalents in green algal fermentation. Plant Physiol. 83, 1022–1026 (1987).

    Article  Google Scholar 

  30. Mus, F., Dubini, A., Seibert, M., Posewitz, M. C. & Grossman, A. R. Anaerobic acclimation in Chlamydomonas reinhardtii—anoxic gene expression, hydrogenase induction, and metabolic pathways. J. Biol. Chem. 282, 25475–25486 (2007).

    Article  Google Scholar 

  31. Inui, H., Miyatake, K., Nakano, Y. & Kitaoka, S. Wax ester fermentation in Euglena gracilis. FEBS Lett. 150, 89–93 (1982).

    Article  Google Scholar 

  32. Tucci, S., Vacula, R., Krajcovic, J., Proksch, P. & Martin, W. Variability of wax ester fermentation in natural and bleached Euglena gracilis strains in response to oxygen and the elongase inhibitor flufenacet. J. Eukaryot. Microbiol. 57, 63–69 (2010).

    Article  Google Scholar 

  33. Schwartz, E., Fritsch, J. & Friedrich, B. in The Prokaryotes: Prokaryotic Physiology and Biochemistry (eds Rosenberg, E. et al.) 119–199 (Springer, 2013).

    Book  Google Scholar 

  34. Hirst, A. D. & Goldberg, D. M. Application of new ultra-micro spectrophotometric determination for serum hydroxybutyrate dehydrogenase activity to diagnosis of myocardial infarction. Br. Heart J. 32, 114–121 (1970).

    Article  Google Scholar 

  35. Dyksma, S. et al. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J. 10, 1939–1953 (2016).

    Article  Google Scholar 

  36. Melis, A. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta 226, 1075–1086 (2007).

    Article  Google Scholar 

  37. Dupreez, D. R. & Bate, G. C. Dark survival of the surf diatom Anaulus australis Drebes et Schulz. Bot. Mar. 35, 315–319 (1992).

    Google Scholar 

  38. Heisterkamp, I. M., Kamp, A., Schramm, A. T., de Beer, D. & Stief, P. Indirect control of the intracellular nitrate pool of intertidal sediment by the polychaete Hediste diversicolor. Mar. Ecol. Prog. Ser. 445, 181–192 (2012).

    Article  Google Scholar 

  39. Canfield, D. E. et al. Pathways of organic carbon oxidation in 3 continental margin sediments. Mar. Geol. 113, 27–40 (1993).

    Article  Google Scholar 

  40. Canfield, D. E., Thamdrup, B. & Hansen, J. W. The anaerobic degredation of organic matter in Danish coastal sediments—iron reduction, manganese reduction and sulfate reduction. Geochim. Cosmochim. Acta 57, 3867–3883 (1993).

    Article  Google Scholar 

  41. Gattuso, J. P. et al. Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. Biogeosciences 3, 489–513 (2006).

    Article  Google Scholar 

  42. Evrard, V., Glud, R. N. & Cook, P. L. M. The kinetics of denitrification in permeable sediments. Biogeochemistry 113, 563–572 (2012).

    Article  Google Scholar 

  43. Bourke, M., Kessler, A. & Cook, P. Influence of buried Ulva lactuca on denitrification in permeable sediments. Mar. Ecol. Prog. Ser. 498, 85–94 (2014).

    Article  Google Scholar 

  44. Nielsen, L. P. Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microbiol. Ecol. 86, 357–362 (1992).

    Article  Google Scholar 

  45. Oshima, M. et al. Highly sensitive determination method for total carbonate in water samples by flow injection analysis coupled with gas-diffusion separation. Anal. Sci. 17, 1285–1290 (2001).

    Article  Google Scholar 

  46. Stookey, L. L. Ferrozine—a new spectrophotometric reagent for iron. Anal. Chem. 42, 779–781 (1970).

    Article  Google Scholar 

  47. Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N. & Van Cappellen, P. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl. Geochem. 15, 785–790 (2000).

    Article  Google Scholar 

  48. Fonselius, S. H. in Methods of Seawater Analysis (ed. Grasshoff, K.) 91–100 (Springer, 2007).

    Google Scholar 

  49. Anderson, L. G., Turner, D. R., Wedborg, M. & Dyrssen, D. in Methods of Seawater Analysis (eds Grasshoff, K., Kremling, K. & Ehrhardt, M.) 127–148 (Springer, 2007).

    Google Scholar 

  50. Jeffrey, S. W. & Humphrey, G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pfl. 167, 191–194 (1975).

    Article  Google Scholar 

  51. Godzien, J. et al. In-vial dual extraction liquid chromatography coupled to mass spectrometry applied to streptozotocin-treated diabetic rats. Tips and pitfalls of the method. J. Chromatogr. A 1304, 52–60 (2013).

    Article  Google Scholar 

  52. Kind, T. et al. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 81, 10038–10048 (2009).

    Article  Google Scholar 

  53. Hasle, G. R. & Syvertsen, E. E. in Identifying Marine Diatoms and Dinoflagellates (eds Tomas, C. R, Hasle, G. R., Syvertsen, E. E., Steidinger, K. A. & Tangen, K.) 5–385 (Elsevier, 1997).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council grant DP1096457 awarded to P.L.M.C. and R.N.G. R.N.G. was additionally supported by Danish Council for Independent Research, Natural Sciences, FNU, (0602-02276B) and the European Research Council through an Advanced Grant (ERC-2010-AdG20100224). The data reported in this paper can be made available by contacting the corresponding authors. We thank J. Middelburg and H. Røy for thoughtful comments on this work.

Author information

Authors and Affiliations

Authors

Contributions

All FTR experiments were performed by M.F.B. and supervised by P.L.M.C., who were both jointly responsible for the experimental design and research direction, with significant input from R.N.G. and J.B. Effluent volatile fatty acid analysis was performed by M.F.B. and supervised by P.J.M. Metabolomics analysis was performed by H.H.-S. Algal culture experiments were performed by M.K. and M.F.B. and supervised by J.B. and P.L.M.C. The manuscript was written by M.F.B. and P.L.M.C. All authors contributed to discussion and editing.

Corresponding authors

Correspondence to Michael F. Bourke or Perran L. M. Cook.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 480 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourke, M., Marriott, P., Glud, R. et al. Metabolism in anoxic permeable sediments is dominated by eukaryotic dark fermentation. Nature Geosci 10, 30–35 (2017). https://doi.org/10.1038/ngeo2843

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2843

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing