Late Miocene global cooling and the rise of modern ecosystems

Abstract

During the late Miocene epoch, about seven million years ago, large areas of the continents experienced drying, enhanced seasonality, and a restructuring of terrestrial plant and animal communities. These changes are seen throughout the subtropics, but have typically been attributed to regional tectonic forcing. Here we present a set of globally distributed sea surface temperature records spanning the past 12 million years based on the alkenone unsaturation method. We find that a sustained late Miocene cooling occurred synchronously in both hemispheres, and culminated with ocean temperatures dipping to near-modern values between about 7 and 5.4 million years ago. The period of maximum cooling coincides with evidence for transient glaciations in the Northern Hemisphere and with a steepening of the pole-to-equator temperature gradient, as well. We thus infer that late Miocene aridity and terrestrial ecosystem changes occurred in a global context of increasing meridional temperature gradients. We conclude that a global forcing mechanism, such as the previously hypothesized decline in atmospheric CO2 levels between eight and six million years ago, is required to explain the late Miocene changes in temperature, climate and ecosystems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Map of the Deep Sea Drilling Program, the Ocean Drilling Program and Integrated Ocean Drilling Program site locations used in this study.
Figure 2: Temperature evolution over the past 12 Myr for the sites in Fig. 1.
Figure 3: Late Miocene to present climate and carbon cycle changes.

References

  1. 1

    Schuster, M. et al. The age of the Sahara desert. Science 311, 821 (2006).

    Article  Google Scholar 

  2. 2

    Dupont, L. M., Rommerskirchen, F., Mollenhauer, G. & Schefuß, E. Miocene to Pliocene changes in South African hydrology and vegetation in relation to the expansion of C4 plants. Earth Planet. Sci. Lett. 375, 408–417 (2013).

    Article  Google Scholar 

  3. 3

    Arakaki, M. et al. Contemporaneous and recent radiations of the world’s major succulent plant lineages. Proc. Natl Acad. Sci. USA 108, 8379–8384 (2011).

    Article  Google Scholar 

  4. 4

    Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C4 photosynthesis, atmospheric CO2 and climate. Oecologia 112, 285–299 (1997).

    Article  Google Scholar 

  5. 5

    Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158 (1997).

    Article  Google Scholar 

  6. 6

    Strömberg, C. A. Evolution of grasses and grassland ecosystems. Annu. Rev. Earth Planet. Sci. 39, 517–544 (2011).

    Article  Google Scholar 

  7. 7

    Wang, Y., Cerling, T. E. & MacFadden, B. J. Fossile horses and carbon isotopes: new evidence for Cenozoic dietary, habitat, and ecosystem changes in North America. Palaeogeogr. Palaeoclimatol. Palaeoecol. 107, 269–279 (1994).

    Article  Google Scholar 

  8. 8

    Badgley, C. et al. Ecological changes in Miocene mammalian record show impact of prolonged climatic forcing. Proc. Natl Acad. Sci. USA 105, 12145–12149 (2008).

    Article  Google Scholar 

  9. 9

    Brunet, M. Two new Mio-Pliocene Chadian hominids enlighten Charles Darwin’s 1871 prediction. Phil. Trans. R. Soc. B 365, 3315–3321 (2010).

    Article  Google Scholar 

  10. 10

    Lewis, A. R. et al. Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proc. Natl Acad. Sci. USA 105, 10676–10680 (2008).

    Article  Google Scholar 

  11. 11

    Zachos, J., Pagani, M., Sloan, L. C., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    Article  Google Scholar 

  12. 12

    Cramer, B., Toggweiler, J. R., Wright, J. D., Katz, M. E. & Miller, K. G. Ocean overturning since the late Cretaceous: inferences from a new benthic foraminiferal isotope compliation. Paleoceanography 24, PA4216 (2009).

    Article  Google Scholar 

  13. 13

    Beerling, D. J. & Royer, D. L. Convergent Cenozoic CO2 history. Nat. Geosci. 4, 418–420 (2011).

    Article  Google Scholar 

  14. 14

    Müller, P. J., Kirst, G., Ruhland, G., von Storch, I. & Rosell-Melé, A. Calibration of the alkenone paleotemperature index on core-tops from the eastern South Atlantic and the global ocean (60° N–60° S). Geochem. Cosmochim. Acta 62, 1757–1772 (1998).

    Article  Google Scholar 

  15. 15

    Zhang, Y. G., Pagani, M. & Liu, Z. A 12-million-year temperature history of the tropical Pacific Ocean. Science 344, 84–87 (2014).

    Article  Google Scholar 

  16. 16

    DeConto, R. M. et al. Thresholds for Cenozoic bipolar glaciation. Nature 455, 652–656 (2008).

    Article  Google Scholar 

  17. 17

    Larsen, H. C. et al. Seven million years of glaciation in Greenland. Science 264, 952–955 (1994).

    Article  Google Scholar 

  18. 18

    Bradshaw, C. D. et al. The relative roles of CO2 and palaeogeography in determining late Miocene climate: results from a terrestrial model-data comparison. Clim. Past 8, 715–786 (2012).

    Article  Google Scholar 

  19. 19

    Hodell, D. A., Curtis, J. H., Sierro, F. J. & Raymo, M. E. Correlation of late Miocene to early Pliocene sequences between the Mediterranean and North Atlantic. Paleoceanography 16, 164–178 (2001).

    Article  Google Scholar 

  20. 20

    Krissek, L. in Proceeding of the Ocean Drilling Program, Scientific Results (eds Rea, D. K., Basov, L. A., Scholl, D. W. & Allan, J. F.) 179–194 (Ocean Drilling Program, 1992).

    Google Scholar 

  21. 21

    Mercer, J. H. & Sutter, J. F. Late Miocene-earliest Pliocene glaciation in southern Argentina: implications for global ice-sheet history. Palaeogeogr. Palaeoclimatol. Palaeoecol. 38, 185–206 (1982).

    Article  Google Scholar 

  22. 22

    Williams, T. et al. Evidence for iceberg armadas from east Antarctica in the Southern Ocean during the late Miocene and early Pliocene. Earth Planet. Sci. Lett. 290, 351–361 (2010).

    Article  Google Scholar 

  23. 23

    Kennett, J. P. & Barker, P. F. Latest Cretaceous to Cenozoic climate and oceanographic developments in the Weddell Sea, Antarctica: an ocean-drilling perspective. Proc. Ocean Drilling Program, Scientific Results 937–960 (Ocean Drilling Program, 1990).

    Google Scholar 

  24. 24

    Thiede, J. et al. Late Cenozoic history of the polar North Atlantic: results from ocean drilling. Quat. Sci. Rev. 17, 185–208 (1998).

    Article  Google Scholar 

  25. 25

    Brierley, C. M. et al. Greatly expanded tropical warm pool and weakened Hadley circulation in the early Pliocene. Science 323, 1714–1718 (2009).

    Article  Google Scholar 

  26. 26

    Pound, M. J. et al. A Tortonian (late Miocene 11.61–7.25 Ma) global vegetation reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 300, 29–45 (2011).

    Article  Google Scholar 

  27. 27

    Diester-Haass, L., Billiups, K. & Emeis, K. C. Late Miocene carbon isotope records and marine biological productivity: was there a (dusty) link? Paleoceanography 21, PA4216 (2006).

    Article  Google Scholar 

  28. 28

    Lunt, D. J. et al. Earth system sensitivity inferred from Pliocene modelling and data. Nat. Geosci. 3, 60–64 (2009).

    Article  Google Scholar 

  29. 29

    Hodell, D. A. & Venz-Curtis, K. A. Late Neogene history of deepwater ventilation in the Southern Ocean. Geochem. Geophys. Geosyst. 7, Q09001 (2006).

    Article  Google Scholar 

  30. 30

    Quade, J. & Cerling, T. E. Expansion of C4 grasses in the late Miocene of Northern Pakistan: evidence from stable isotopes in paleosols. Palaeogeogr. Palaeoclimatol. Palaeoecol. 115, 91–116 (1995).

    Article  Google Scholar 

  31. 31

    Zhang, Z. et al. Aridification of the Sahara desert caused by Tethys Sea shrinkage during the late Miocene. Nature 513, 401–404 (2014).

    Article  Google Scholar 

  32. 32

    LaRiviere, J. P. et al. Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing. Nature 486, 97–100 (2012).

    Article  Google Scholar 

  33. 33

    Bolton, C. T. & Stoll, H. M. Late Miocene threshold response of marine algae to carbon dioxide limitation. Nature 500, 558–562 (2013).

    Article  Google Scholar 

  34. 34

    Huang, Y., Clemens, S. C., Liu, W., Wang, Y. & Prell, W. L. Large-scale hydrological change drove the late Miocene C4 plant expansion in the Himalayan foreland and Arabian Peninsula. Geology 35, 531–534 (2007).

    Article  Google Scholar 

  35. 35

    Herbert, T. D., Cleaveland Peterson, L., Lawrence, K. T. & Liu, Z. Tropical ocean temperature over the past 3.5 million years. Science 328, 1530–1534 (2010).

    Article  Google Scholar 

  36. 36

    Liu, Z. & Herbert, T. D. High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch. Nature 427, 720–723 (2004).

    Article  Google Scholar 

  37. 37

    Lawrence, K. T., Liu, Z. & Herbert, T. D. Evolution of the eastern tropical Pacific through Plio-Pleistocene glaciation. Science 312, 79–83 (2006).

    Article  Google Scholar 

  38. 38

    Lawrence, K. T., Herbert, T. D., Brown, C. M., Raymo, M. E. & Haywood, A. M. High-amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period. Paleoceanography 24, PA2218 (2009).

    Article  Google Scholar 

  39. 39

    Rommerskirchen, F., Condon, T., Mollenhauer, G., Dupont, L. M. & Schefuss, E. Miocene to Pliocene development of surface and subsurface temperatures in the Benguela Current system. Paleoceanography 26, PA3216 (2011).

    Article  Google Scholar 

  40. 40

    Seki, O. et al. Paleoceanographic changes in the Eastern Equatorial Pacific over the last 10 Myr. Paleoceanography 27, PA3224 (2012).

    Article  Google Scholar 

  41. 41

    Rousselle, G., Beltran, C., Sicre, M. A., Raffi, I. & De Rafelis, M. Sea-surface condition changes in the Equatorial Pacific during the Mio-Pliocene as inferred from coccolith geochemistry. Earth Planet. Sci. Lett. 361, 412–421 (2013).

    Article  Google Scholar 

  42. 42

    Tzanova, A., Herbert, T. D. & Cleaveland Peterson, L. C. Cooling Mediterranean Sea Surface Temperatures during the late Miocene provide a climate context for evolutionary transitions in Africa and Eurasian flora and fauna. Earth Planet. Sci. Lett. 419, 71–80 (2015).

    Article  Google Scholar 

  43. 43

    Herbert, T. D., Peterson, L. C. & Ng, G. Evolution of Mediterranean sea surface temperatures 3.5-1.5 Ma: regional and hemispheric influences. Earth Planet. Sci. Lett. 409, 307–318 (2015).

    Article  Google Scholar 

  44. 44

    Emeis, K.-C. et al. Temperature and salinity variations of Mediterranean Sea surface waters over the last 16,000 years from records of planktonic stable oxygen isotopes and alkenone unsaturation ratios. Palaeogeogr. Palaeoclimatol. Palaeoecol. 158, 259–280 (2000).

    Article  Google Scholar 

  45. 45

    Emeis, K.-C. et al. Eastern Mediterranean surface water temperatures and δ18O composition during deposition of sapropels in the late Quaternary. Paleoceanography 18, 1005 (2003).

    Article  Google Scholar 

  46. 46

    Fedorov, A. V., Burls, N., Lawrence, K. & Peterson, L. Tightly linked ocean zonal and meridional temperature gradients over geological timescales. Nat. Geosci. 8, 975–980 (2015).

    Article  Google Scholar 

  47. 47

    Rosell-Melé, A. & Prahl, F. G. Seasonality of temperature estimates as inferred from sediment trap data. Quat. Sci. Rev. 72, 128–136 (2013).

    Article  Google Scholar 

  48. 48

    Prahl, F. G., Muehlhausen, L. A. & Zahnle, D. L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim. Cosmochim. Acta 52, 2303–2310 (1988).

    Article  Google Scholar 

  49. 49

    Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).

    Google Scholar 

  50. 50

    Gradstein, F. M., Ogg, G. & Schmitz, M. The Geologic Time Scale 2012 2-Volume Set (Elsevier, 2012).

    Google Scholar 

  51. 51

    NODC_WOA98 (NOAA/OAR/ESRL PSD, 1998); http://www.esrl.noaa.gov/psd

  52. 52

    Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012).

    Article  Google Scholar 

  53. 53

    Wessel, P. & Smith, W. H. F. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. 101, 8741–8743 (1996).

    Article  Google Scholar 

  54. 54

    Lear, C. H., Rosenthal, Y. & Wright, J. D. The closing of a seaway: ocean water masses and global climate change. Earth Planet. Sci. Lett. 210, 425–436 (2003).

    Article  Google Scholar 

  55. 55

    Rea, D. K., Snoeckx, H. & Joseph, L. H. Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the Northern Hemisphere. Paleoceanography 13, 215–224 (1998).

    Article  Google Scholar 

  56. 56

    Molnar, P. Mio-Pliocene growth of the Tibetan Plateau and evolution of East Asian climate. Palaeontol. Electron. 8, 1–23 (2005).

    Google Scholar 

  57. 57

    Ruddiman, W. F. et al. Late Miocene to Pleistocene evolution of climate in Africa and the low-latitude Atlantic: overview of Leg 108 results. in Proceeding of the Ocean Drilling Program, Scientific Results (eds Ruddiman, W. F., Sarnthein, M., Baldaufand, J. G. & Heath, R.) 463–482 (Ocean Drilling Program, 1989).

    Google Scholar 

  58. 58

    Tipple, B. J. & Pagani, M. The early origins of terrestrial C4 photosynthesis. Annu. Rev. Earth Planet. Sci. 35, 435–461 (2007).

    Article  Google Scholar 

  59. 59

    Seki, O. et al. Alkenone and boron-based Pliocene pCO2 records. Earth Planet. Sci. Lett. 292, 201–211 (2010).

    Article  Google Scholar 

  60. 60

    Zhang, Y. G., Pagani, M., Liu, Z., Bohaty, S. & DeConto, R. A 40-million-year history of atmospheric CO2 . Phil. Trans. R. Soc. A 371, 20130146 (2013).

    Article  Google Scholar 

  61. 61

    Bartoli, G., Hoenisch, B. & Zeebe, R. E. Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere Glaciation. Paleoceanography 26, PA4213 (2011).

    Article  Google Scholar 

  62. 62

    Martinez-Boti, M. A. et al. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518 (2015).

    Article  Google Scholar 

  63. 63

    Foster, G. L., Lear, C. H. & Rae, J. W. B. The evolution of pCO2, ice volume and climate during the middle Miocene. Earth Planet. Sci. Lett. 341–344, 243–254 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

Portions of this work were funded by the Petroleum Research Fund of the American Chemical Society, by the Evolving Earth Foundation, and by NSF grants to T.D.H., K.T.L. and L.C.P. (0623487, 1304366, 1459280, and 1545859). We thank D. Muller, J. Cannon and M. Seton for help with GPlates backtracking software, A. Alpert and A. Martin for laboratory analyses, C. Riihimaki for assistance in creating Fig. 1 and J.-E. Lee, S. C. Clemens, C. Janis and C. Bolton for comments on earlier drafts. We gratefully acknowledge assistance by the curators for the IODP

Author information

Affiliations

Authors

Contributions

T.D.H. and K.T.L. conceived the idea of a global synthesis of late Miocene SST estimates based on the alkenone method and wrote the majority of the text. K.T.L., L.C.P., C.S.K., R.C.-G. and A.T. provided primary data based on their laboratory work, and contributed to the analysis and the text. K.T.L. produced the figures.

Corresponding author

Correspondence to Timothy D. Herbert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 289 kb)

Supplementary Information

Supplementary Information (XLSX 42 kb)

Supplementary Information

Supplementary Information (XLS 2667 kb)

Supplementary Information

Supplementary Information (XLSX 82 kb)

Supplementary Information

Supplementary Information (XLSX 77 kb)

Supplementary Information

Supplementary Information (XLS 496 kb)

Supplementary Information

Supplementary Information (TXT 4 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Herbert, T., Lawrence, K., Tzanova, A. et al. Late Miocene global cooling and the rise of modern ecosystems. Nature Geosci 9, 843–847 (2016). https://doi.org/10.1038/ngeo2813

Download citation

Further reading