Impact of warming on CO2 emissions from streams countered by aquatic photosynthesis


Streams and rivers are an important source of CO2 emissions1. One important control of these emissions is the metabolic balance between photosynthesis, which converts CO2 to organic carbon, and respiration, which converts organic carbon into CO2 (refs 2,3). Carbon emissions from rivers could increase with warming, independently of organic carbon inputs, because the apparent activation energy is predicted to be higher for respiration than photosynthesis4,5. However, physiological CO2-concentrating mechanisms may prevent the increase in photorespiration, limiting photosynthesis with warming6. Here we report the thermal response of aquatic photosynthesis from streams located in geothermal areas of North America, Iceland and Kamchatka with water temperatures ranging between 4 and 70 °C. Based on a thermodynamic theory of enzyme kinetics, we show that the apparent activation energy of aquatic ecosystem photosynthesis is approximately 0.57 electron volts (eV) for temperatures ranging from 4 to 45 °C, which is similar to that of respiration4,5,7,8,9. This result and a global synthesis of 222 streams suggest that warming will not create increased stream and river CO2 emissions from a warming-induced imbalance between photosynthesis and respiration. However, temperature could affect annual CO2 emissions from streams if ecosystem respiration is independent of gross primary production, and may be amplified by increasing organic carbon supply.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Thermal response of aquatic ecosystem photosynthesis (GPP) from groundwater-fed streams draining geothermal areas of the Northern Hemisphere.
Figure 2: Thermal response of photosynthesis in four Icelandic geothermal areas (39 sites in total).
Figure 3: Global synthesis of stream ecosystem metabolism at 222 sites, with discharge 0.5 to 5,120 l s−1 during summer time.


  1. 1

    Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    Article  Google Scholar 

  2. 2

    Battin, T. J. et al. Biophysical controls on organic carbon fluxes in fluvial networks. Nat. Geosci. 1, 95–100 (2008).

    Article  Google Scholar 

  3. 3

    Hotchkiss, E. R. et al. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat. Geosci. 8, 696–699 (2015).

    Article  Google Scholar 

  4. 4

    Yvon-Durocher, G., Jones, J. I., Trimmer, M., Woodward, G. & Montoya, J. M. Warming alters the metabolic balance of ecosystems. Phil. Trans. R. Soc. B 365, 2117–2126 (2010).

    Article  Google Scholar 

  5. 5

    Yvon-Durocher, G. et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487, 472–476 (2012).

    Article  Google Scholar 

  6. 6

    Demars, B. O. L., Thompson, J. & Manson, J. R. Stream metabolism and the open diel oxygen method: principles, practice, and perspectives. Limnol. Oceanogr. Methods 13, 356–374 (2015).

    Article  Google Scholar 

  7. 7

    Sand-Jensen, K., Pedersen, N. L. & Sondergaard, M. Bacterial metabolism in small temperate streams under contemporary and future climates. Freshwat. Biol. 52, 2340–2353 (2007).

    Article  Google Scholar 

  8. 8

    Acuña, V., Wolf, A., Uehlinger, U. & Tockner, K. Temperature dependence of stream benthic respiration in an Alpine river network under global warming. Freshwat. Biol. 53, 2076–2088 (2008).

    Article  Google Scholar 

  9. 9

    Perkins, D. M. et al. Consistent temperature dependence of respiration across ecosystems contrasting in thermal history. Glob. Change Biol. 18, 1300–1311 (2012).

    Article  Google Scholar 

  10. 10

    Allen, A. P., Gillooly, J. F. & Brown, J. H. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 19, 202–213 (2005).

    Article  Google Scholar 

  11. 11

    Lin, M. T., Occhialini, A., Andralojc, P. J., Parry, M. A. J. & Hanson, M. R. A faster Rubisco with potential to increase photosynthesis in crops. Nature 513, 547–550 (2014).

    Article  Google Scholar 

  12. 12

    Raven, J. A. & Geider, R. J. Temperature and algal growth. New Phytol. 110, 441–461 (1988).

    Article  Google Scholar 

  13. 13

    Galmés, J., Kapralov, M. V., Copolovici, L. O., Hermida-Carrera, C. & Niinemets, Ü. Temperature responses of the Rubisco maximum carboxylase activity across domains of life: phylogenetic signals, trade-offs, and importance for carbon gain. Photosynth. Res. 123, 183–201 (2015).

    Article  Google Scholar 

  14. 14

    Tcherkez, G. G. B., Farquhar, G. D. & Andrews, T. J. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc. Natl Acad. Sci. USA 103, 7246–7251 (2006).

    Article  Google Scholar 

  15. 15

    Demars, B. O. L. et al. Temperature and the metabolic balance of streams. Freshwat. Biol. 56, 1106–1121 (2011).

    Article  Google Scholar 

  16. 16

    Falkowski, P. G. & Raven, J. A. Aquatic Photosynthesis 2nd edn (Princeton Univ. Press, 2007).

    Google Scholar 

  17. 17

    Raven, J. A., Cockell, C. S. & De La Rocha, C. L. The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Phil. Trans. R. Soc. B 363, 2641–2650 (2008).

    Article  Google Scholar 

  18. 18

    Bernacchi, C. J. et al. Modelling C3 photosynthesis from the chloroplast to the ecosystem. Plant Cell Environ. 36, 1641–1657 (2013).

    Article  Google Scholar 

  19. 19

    Raven, J. A. & Beardall, J. CO2 concentrating mechanisms and environmental change. Aquat. Bot. 118, 24–37 (2014).

    Article  Google Scholar 

  20. 20

    Schoolfield, R. M., Sharpe, P. J. H. & Magnuson, C. E. Non-linear regression of biological temperature dependent rate models based on absolute reaction rate theory. J. Theor. Biol. 88, 719–731 (1981).

    Article  Google Scholar 

  21. 21

    Pawar, S., Dell, A. I. & Savage, V. M. in Aquatic Functional Biodiversity. An Ecological and Evolutionary Perspective (eds Belgrano, A., Woodward, G. & Jacob, U.) Ch. 1, 3–36 (Academic, 2015).

    Google Scholar 

  22. 22

    Kerkhoff, A. J., Enquist, B. J., Elser, J. J. & Fagan, W. F. Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Glob. Ecol. Biogeogr. 14, 585–598 (2005).

    Article  Google Scholar 

  23. 23

    Michaletz, S. T., Cheng, D., Kerkhoff, A. J. & Enquist, B. J. Convergence of terrestrial plant production across global climate gradients. Nature 512, 39–44 (2014).

    Article  Google Scholar 

  24. 24

    Welter, J. R. et al. Does N2 fixation amplify the temperature dependence of ecosystem metabolism? Ecology 96, 603–610 (2015).

    Article  Google Scholar 

  25. 25

    Hall, R. O. & Beaulieu, J. J. Estimating autotrophic respiration in streams using daily metabolism data. Freshwat. Sci. 32, 507–516 (2013).

    Article  Google Scholar 

  26. 26

    Bernot, M. J. Inter-regional comparison of land-use effects on stream metabolism. Freshwat. Biol. 55, 1874–1890 (2010).

    Article  Google Scholar 

  27. 27

    Davidson, T. A. et al. Eutrophication effects on greenhouse gas fluxes from shallow-lake mesocosms override those of climate warming. Glob. Change Biol. 21, 4449–4463 (2015).

    Article  Google Scholar 

  28. 28

    Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84 (2014).

    Article  Google Scholar 

  29. 29

    Padfield, D., Yvon-Durocher, G., Buckling, A., Jennings, S. & Yvon-Durocher, G. Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton. Ecol. Lett. 19, 133–142 (2016).

    Article  Google Scholar 

  30. 30

    Dewar, R. C., Medlyn, B. E. & McMurtrie, R. E. Acclimation of the respiration photosynthesis ratio to temperature: insights from a model. Glob. Change Biol. 5, 615–622 (1999).

    Article  Google Scholar 

  31. 31

    Cross, W. F., Hood, J. M., Benstead, J. P., Huryn, A. D. & Nelson, D. Interactions between temperature and nutrients across levels of ecological organization. Glob. Change Biol. 21, 1025–1040 (2015).

    Article  Google Scholar 

  32. 32

    López-Urrutia, A., San Martin, E., Harris, R. P. & Irigoien, X. Scaling the metabolic balance of the oceans. Proc. Natl Acad. Sci. USA 103, 8739–8744 (2006).

    Article  Google Scholar 

  33. 33

    Lapierre, J.-F., Guillemette, F., Berggren, M. & del Giorgio, P. A. Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems. Nat. Commun. 4, 2972 (2013).

    Article  Google Scholar 

  34. 34

    Lenn, R. C. Primary Productivity of a Thermal Spring MSc thesis, Univ. California Davis (1966).

  35. 35

    Brock, T. D. Relationship between standing crop and primary productivity along a hot spring thermal gradient. Ecology 48, 566–571 (1967).

    Article  Google Scholar 

  36. 36

    Stockner, J. G. Algal growth and primary productivity in a thermal stream. J. Fish Res. Board Can. 25, 2037–2058 (1968).

    Article  Google Scholar 

  37. 37

    Revsbech, N. P. & Ward, D. M. Microelectrode studies of interstitial water chemistry and photosynthetic activity in a hot-spring microbial mat. Appl. Environ. Microbiol. 48, 270–275 (1984).

    Google Scholar 

  38. 38

    Jorgensen, B. B. & Nelson, D. C. Bacterial zonation, photosynthesis, and spectral light distribution in hot spring microbial mats of Iceland. Microb. Ecol. 16, 133–147 (1988).

    Article  Google Scholar 

  39. 39

    Iwata, T. et al. Metabolic balance of streams draining urban and agricultural watersheds in central Japan. Limnology 8, 243–250 (2007).

    Article  Google Scholar 

  40. 40

    Marti, E. et al. Variation in stream C, N and P uptake along an altitudinal gradient: a space-for-time analogue to assess potential impacts of climate change. Hydrol. Res. 40, 123–137 (2009).

    Article  Google Scholar 

  41. 41

    Masese, F. O. Dynamics in Organic Matter Processing, Ecosystem Metabolism and Trophic Sources for Consumers in the Mara River, Kenya (CRC Press/Balkema, 2015).

    Google Scholar 

  42. 42

    Bott, T. L. et al. Ecosystem metabolism in streams of the Catskill Mountains (Delaware and Hudson River watersheds) and Lower Hudson Valley. J. North Am. Benthol. Soc. 25, 1018–1044 (2006).

    Article  Google Scholar 

  43. 43

    Riley, A. J. & Dodds, W. K. Whole-stream metabolism: strategies for measuring and modeling diel trends of dissolved oxygen. Freshwat. Sci. 32, 56–69 (2013).

    Article  Google Scholar 

  44. 44

    Edwards, R. W. & Owens, M. The effect of plants on river conditions. IV. The oxygen balance of a chalk stream. J. Ecol. 50, 207–220 (1962).

    Article  Google Scholar 

  45. 45

    Odum, H. T. Primary production measurements in eleven Florida springs and a marine turtle-grass community. Limnol. Oceanogr. 2, 85–97 (1957).

    Article  Google Scholar 

  46. 46

    Fellows, C. S., Valett, H. M. & Dahm, C. N. Whole-stream metabolism in two montane streams: contribution of the hyporheic zone. Limnol. Oceanogr. 46, 523–531 (2001).

    Article  Google Scholar 

  47. 47

    Fellows, C. S., Valett, H. M., Dahm, C. N., Mulholland, P. J. & Thomas, S. A. Coupling nutrient uptake and energy flow in headwater streams. Ecosystems 9, 788–804 (2006).

    Article  Google Scholar 

  48. 48

    Gücker, B., Boechat, I. G. & Giani, A. Impacts of agricultural land use on ecosystem structure and whole-stream metabolism of tropical Cerrado streams. Freshwat. Biol. 54, 2069–2085 (2009).

    Article  Google Scholar 

  49. 49

    Von Schiller, D. et al. Influence of land use on stream ecosystem function in a Mediterranean catchment. Freshwat. Biol. 53, 2600–2612 (2008).

    Article  Google Scholar 

  50. 50

    Dawson, J. J. C., Billett, M. F. & Hope, D. Diurnal variations in the carbon chemistry of two acidic peatland streams in north-east Scotland. Freshwat. Biol. 46, 1309–1322 (2001).

    Article  Google Scholar 

  51. 51

    Stutter, M. I., Demars, B. O. L. & Langan, S. J. River phosphorus cycling: separating biotic and abiotic uptake during short-term changes in sewage effluent loading. Water Res. 44, 4425–4436 (2010).

    Article  Google Scholar 

  52. 52

    Wilcock, R. J. et al. Characterisation of lowland streams using a single-station diurnal curve analysis model with continuous monitoring data for dissolved oxygen and temperature. NZ J. Mar. Freshwat. Res. 32, 67–79 (1998).

    Article  Google Scholar 

  53. 53

    Chapra, S. C. & Di Toro, D. M. Delta method for estimating primary production, respiration, and reaeration in streams. J. Environ. Eng.-ASCE 117, 640–655 (1991).

    Article  Google Scholar 

  54. 54

    Sharpe, P. J. H. & DeMichele, D. W. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64, 649–670 (1977).

    Article  Google Scholar 

  55. 55

    Young, J. N., Goldman, J. A. L., Kranz, S. A., Tortell, P. D. & Morel, F. M. M. Slow carboxylation of Rubisco constrains the rate of carbon fixation during Antarctic phytoplankton blooms. New Phytol. 205, 172–181 (2015).

    Article  Google Scholar 

  56. 56

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015);

  57. 57

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

  58. 58

    Winter, B. Linear models and linear mixed effects models in R with linguistic applications. Preprint at (2013).

  59. 59

    Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).

    Article  Google Scholar 

  60. 60

    Bates, D. et al. Package ‘lme4’ Linear Mixed-Effects Models using ‘Eigen’ and S4. R package version 1.1-10. (R Foundation for Statistical Computing, 2015);

  61. 61

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest: Tests in Linear Mixed Effects Models. R package version 2.0-29. (R Foundation for Statistical Computing, 2015);

  62. 62

    Barton, K. Package ‘MuMIn’. R package version 1.15.6. (R Foundation for Statistical Computing, 2016);

  63. 63

    Johnson, P. C. D. Extension of Nakagawa Schielzeth’s R-GLMM(2) to random slopes models. Methods Ecol. Evol. 5, 944–946 (2014).

    Article  Google Scholar 

Download references


We wish to thank the park rangers for permission to work in Iceland and Kamchatka; B. Marteau, R. Magnúsdóttir, D. Árnadóttir, Yu. Bespalaya, O. Usacheva, A. Kondakov and I. Bolotov for help with fieldwork; and Y. Cook, H. Watson, L. Johnson, S. McIntyre for processing water chemical analyses. B.O.L.D. and T.E.F. were funded by the Scottish Government Rural and Environmental Science and Analytical Services (RESAS). J.S.Ó., G.M.G. and B.O.L.D. were funded by the Icelandic National Power Company’s Energy and Environmental Fund. J.R.M. was funded by Stockton University. N.F. and the travel to Kamchatka were partly funded by AU IDEAS. J.M.H. was supported by the Icelandic Research Fund (i. Rannsóknasjóður) 141840-051 during manuscript preparation. J.J.D.T. was funded by NERC grant NE/J011967/1. Comments by S. Maberly and J. Kemp improved the manuscript.

Author information




B.O.L.D., G.M.G., J.S.Ó., J.R.M. and N.F. designed the field study. B.O.L.D. analysed the data and wrote the manuscript. B.O.L.D. and J.J.D.T. assembled the global synthesis and provided additional unpublished data. All authors contributed to at least one field expedition and commented on the manuscript.

Corresponding author

Correspondence to Benoît O. L. Demars.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1404 kb)

Supplementary Information

Supplementary Information (XLSX 65 kb)

Supplementary Information

Supplementary Information (XLSX 31 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Demars, B., Gíslason, G., Ólafsson, J. et al. Impact of warming on CO2 emissions from streams countered by aquatic photosynthesis. Nature Geosci 9, 758–761 (2016).

Download citation

Further reading