Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large-scale subduction of continental crust implied by India–Asia mass-balance calculation

An Addendum to this article was published on 02 May 2017

This article has been updated

Abstract

Continental crust is buoyant compared with its oceanic counterpart and resists subduction into the mantle. When two continents collide, the mass balance for the continental crust is therefore assumed to be maintained. Here we use estimates of pre-collisional crustal thickness and convergence history derived from plate kinematic models to calculate the crustal mass balance in the India–Asia collisional system. Using the current best estimates for the timing of the diachronous onset of collision between India and Eurasia, we find that about 50% of the pre-collisional continental crustal mass cannot be accounted for in the crustal reservoir preserved at Earth’s surface today—represented by the mass preserved in the thickened crust that makes up the Himalaya, Tibet and much of adjacent Asia, as well as southeast Asian tectonic escape and exported eroded sediments. This implies large-scale subduction of continental crust during the collision, with a mass equivalent to about 15% of the total oceanic crustal subduction flux since 56 million years ago. We suggest that similar contamination of the mantle by direct input of radiogenic continental crustal materials during past continent–continent collisions is reflected in some ocean crust and ocean island basalt geochemistry. The subduction of continental crust may therefore contribute significantly to the evolution of mantle geochemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Palaeo-geographic and -thickness reconstructions of the Himalaya–Tibet orogen.
Figure 2: Continental thickness and mass convergence.
Figure 3: Schematic tectonic cross-section of India, the Himalayan orogenic prism north of the Main Frontal Thrust (MFT) and southern Tibet during lower crustal subduction31.

Similar content being viewed by others

Change history

  • 27 March 2017

    The authors omitted to cite a paper5 that used a crustal mass-balance approach, but alternative constraints on paleogeography and pre-collisional crustal geometries, to argue that about 40 to 50% of Indian crust is missing from the present-day crustal reservoir of the Himalayan–Tibetan system and may have been recycled into the mantle. Given limited constraints on the uncertainty of this estimate, the authors chose to focus their comparison on the later work of Yakovlev and Clark (2014). Nevertheless, the authors have decided the work of Replumaz and colleagues merits citation. References 5. Replumaz, A., Negredo, A.M., Guillot, S., van der Beek, P. & Villaseñor, A. Crustal mass budget and recycling during the India/Asia collision. Tectonophysics 492, 99–107 (2010).

References

  1. Dewey, J. F. & Bird, J. M. Mountain belts and the new global tectonics. J. Geophys. Res. 75, 2625–2647 (1970).

    Article  Google Scholar 

  2. McKenzie, D. P. Speculations on the consequences and causes of plate motions. Geophys. J. R. Astron. Soc. 18, 1–32 (1969).

    Article  Google Scholar 

  3. Richter, F., Rowley, D. & DePaolo, D. Sr isotope evolution of seawater: the role of tectonics. Earth Planet. Sci. Lett. 109, 11–23 (1992).

    Article  Google Scholar 

  4. van Hinsbergen, D. J. J. et al. Restoration of Cenozoic deformation in Asia and the size of Greater India. Tectonics 30, TC5003 (2011).

    Article  Google Scholar 

  5. Replumaz, A. Guillot, A. M. van der Beek, P. & Villaseñor, A. Crustal mass budget and recycling during the India/Asia collision. Tectonophysics 492, 99–107 (2010).

    Article  Google Scholar 

  6. Yakovlev, P. & Clark, M. Conservation and redistribution of crust during the Indo-Asian collision. Tectonics 33, 1016–1027 (2014).

    Article  Google Scholar 

  7. England, P. & Houseman, G. Finite strain calculations of continental deformation: 2. Comparison with the India–Asia collision zone. J. Geophys. Res. 91, 3664–3676 (1986).

    Article  Google Scholar 

  8. Clift, P. D. Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth Planet. Sci. Lett. 241, 571–580 (2006).

    Article  Google Scholar 

  9. Métivier, F., Gaudemer, Y., Tapponnier, P. & Klein, M. Mass accumulation rates in Asia during the Cenozoic. Geophys. J. Int. 137, 280–318 (2002).

    Article  Google Scholar 

  10. Tapponnier, P., Peltzer, G., Le Dain, A. Y., Armijo, R. & Cobbold, P. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology 10, 611–616 (1982).

    Article  Google Scholar 

  11. Gaetani, M. & Garzanti, E. Multicyclic history of the northern India continental margin (northwestern Himalaya) (1). Am. Assoc. Petrol. Geol. Bull. 75, 1427–1446 (1991).

    Google Scholar 

  12. Green, O. R., Searle, M. P., Corfield, R. I. & Corfield, R. M. Cretaceous-Tertiary carbonate platform evolution and the age of the India–Asia collision along the Ladakh Himalaya (northwest India). J. Geol. 116, 331–353 (2008).

    Article  Google Scholar 

  13. Roddaz, M. et al. Provenance of Cenozoic sedimentary rocks from the Sulaiman fold and thrust belt, Pakistan: implications for the palaeogeography of the Indus drainage system. J. Geol. Soc. Lond. 168, 499–516 (2011).

    Article  Google Scholar 

  14. Wilke, F. D. H. et al. The multistage exhumation history of the Kaghan Valley UHP series, NW Himalaya, Pakistan from U-Pb and 40Ar/39Ar ages. Eur. J. Mineral. 22, 703–719 (2010).

    Article  Google Scholar 

  15. Leech, M., Singh, S., Jain, A., Klemperer, S. & Manickavasagam, R. The onset of India–Asia continental collision: early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet. Sci. Lett. 234, 83–97 (2005).

    Article  Google Scholar 

  16. St-Onge, M. R., Rayner, N., Palin, R. M., Searle, M. P. & Waters, D. J. Integrated pressure-temperature-time constraints for the Tso Morari dome (northwest India): implications for the burial and exhumation path of UHP units in the western Himalaya. J. Metamorph. Geol. 31, 469–504 (2013).

    Article  Google Scholar 

  17. Bouilhol, P., Jagoutz, O., Hanchar, J. M. & Dudas, F. O. Dating the India–Eurasia collision through arc magmatic records. Earth Planet. Sci. Lett. 366, 163–175 (2013).

    Article  Google Scholar 

  18. DeCelles, P., Kapp, P., Gehrels, G. & Ding, L. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: implications for the age of initial India–Asia collision. Tectonics 33, 824–849 (2014).

    Article  Google Scholar 

  19. Rowley, D. Age of initiation of collision between India and Asia: a review of stratigraphic data. Earth Planet. Sci. Lett. 145, 1–13 (1996).

    Article  Google Scholar 

  20. Aikman, A. B., Harrison, T. M. & Lin, D. Evidence for early (>44 Ma) Himalayan crustal thickening, Tethyan Himalaya, southeastern Tibet. Earth Planet. Sci. Lett. 274, 14–23 (2008).

    Article  Google Scholar 

  21. Argand, E. Proc. XIIIth Int. Geol. Congr. vol. 1, pt. 5, 181–372 (Hafner Press, 1924).

  22. van Hinsbergen, D. J. J. et al. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proc. Natl Acad. Sci. USA 109, 7659–7664 (2012).

    Article  Google Scholar 

  23. Orme, D. A., Carrapa, B. & Kapp, P. Sedimentology, provenance and geochronology of the upper Cretaceous-lower Eocene western Xigaze forearc basin, southern Tibet. Basin Res. 27, 1–25 (2014).

    Google Scholar 

  24. Laske, G., Masters, G., Ma, Z. & Pasyanos, M. Update on CRUST1.0 - A 1-degree global model of Earth’s crust. European Geosciences Union (Geophysical Research Abstracts, 2013).

  25. Zhu, B., Kidd, W. S. F., Rowley, D. B., Currie, B. S. & Shafique, N. Age of initiation of the India–Asia collision in the East-Central Himalaya. J. Geol. 113, 265–285 (2005).

    Article  Google Scholar 

  26. Ding, L. et al. The Andean-type Gangdese Mountains: paleoelevation record from the Paleocene–Eocene Linzhou basin. Earth Planet. Sci. Lett. 392, 250–264 (2014).

    Article  Google Scholar 

  27. Ingalls, M., Rowley, D. & Colman, A. Paleocene-Eocene Lhasaplano paleoaltimetry: implications for mass balance in the India–Asia collision. Goldschmidt Conf. (Cambridge Publications, 2015).

  28. Zhang, K. J. Cretaceous palaeogeography of Tibet and adjacent areas (China): tectonic implications. Cretac. Res. 21, 23–33 (2000).

    Article  Google Scholar 

  29. Leloup, P. H. et al. The Ailao Shan-Red River shear zone (Yunnan, China), tertiary transform boundary of Indochina. Tectonophysics 251, 3–84 (1995).

    Article  Google Scholar 

  30. Li, C., van der Hilst, R. D., Meltzer, A. S. & Engdahl, E. R. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sci. Lett. 274, 157–168 (2008).

    Article  Google Scholar 

  31. Nabelek, J. et al. Underplating in the Himalaya–Tibet collision zone revealed by the Hi-CLIMB experiment. Science 325, 1371–1374 (2009).

    Article  Google Scholar 

  32. Wittlinger, G., Farra, V., Hetenyi, G., Vergne, J. & Nabelek, J. Seismic velocities in southern Tibet lower crust: a receiver function approach for eclogite detection. Geophys. J. Int. 177, 1037–1049 (2009).

    Article  Google Scholar 

  33. Hetenyi, G. et al. Density distribution of the India plate beneath the Tibetan Plateau: geophysical and petrological constraints on the kinetics of lower-crustal eclogitization. Earth Planet. Sci. Lett. 264, 226–244 (2007).

    Article  Google Scholar 

  34. Bollinger, L., Henry, P. & Avouac, J.-P. Mountain building in the Nepal Himalaya: thermal and kinematic model. Earth Planet. Sci. Lett. 244, 58–71 (2006).

    Article  Google Scholar 

  35. Zhang, P.-Z. et al. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 32, 809–812 (2004).

    Article  Google Scholar 

  36. Hafkenscheid, E., Wortel, M. J. R. & Spakman, W. Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions. J. Geophys. Res. 111, B08401 (2006).

    Article  Google Scholar 

  37. van der Voo, R., Spakman, W. & Bijwaard, H. Tethyan subducted slabs under India. Earth Planet. Sci. Lett. 171, 7–20 (1999).

    Article  Google Scholar 

  38. Lee, C. in Treatise on Geochemistry 2nd edn (eds Holland, H. & Turekian, K.) 423–456 (Elsevier, 2014).

    Book  Google Scholar 

  39. Hanan, B. B. et al. Pb and Hf isotope variations along the Southeast Indian Ridge and the dynamic distribution of MORB source domains in the upper mantle. Earth Planet. Sci. Lett. 375, 196–208 (2013).

    Article  Google Scholar 

  40. Hofmann, A. W. in Treatise on Geochemistry 2nd edn (eds Holland, H. & Turekian, K.) 67–101 (Elsevier, 2014).

    Book  Google Scholar 

  41. O’ Brien, P. J. in Orogenic Processes: Quantification and Modelling in the Variscan Belt (eds Franke, W., Haak, V., Oncken, O. & Tanner, D.) 369–386 (Geological Society Special Publications 179, The Geological Society, 2000).

    Google Scholar 

  42. Fritz, H. et al. Orogen styles in the East African Orogen: a review of the Neoproterozoic to Cambrian tectonic evolution. J. Afr. Earth Sci. 86, 65–106 (2013).

    Article  Google Scholar 

  43. Dewey, J. F. & Burke, K. C. A. Tibetan, Variscan, and Precambrian basement reactivation: products of continental collision. J. Geol. 81, 683–692 (1973).

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Yakovlev for generously sharing both crustal thickness and domain polygon boundary with us. Fieldwork was funded by the National Science Foundation Grant EAR no. 0609782 and EAR no. 1111274 awarded to D.B.R. and EAR no. 0609756 awarded to B.C. Supporting geochemical analyses were enabled by NSF EAR no. 0923831 awarded to A.S.C. and D.B.R.

Author information

Authors and Affiliations

Authors

Contributions

D.B.R. and M.I. completed mass-balance calculations. M.I., D.B.R., B.C. and A.S.C. contributed to the manuscript.

Corresponding authors

Correspondence to Miquela Ingalls or David B. Rowley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 310 kb)

Supplementary Table 1

Supplementary Information (XLSX 63 kb)

Supplementary Table 2

Supplementary Information (XLSX 51 kb)

Supplementary Table 3

Supplementary Information (XLSX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ingalls, M., Rowley, D., Currie, B. et al. Large-scale subduction of continental crust implied by India–Asia mass-balance calculation. Nature Geosci 9, 848–853 (2016). https://doi.org/10.1038/ngeo2806

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2806

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing