Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s

Abstract

Permafrost thaw exposes previously frozen soil organic matter to microbial decomposition. This process generates methane and carbon dioxide, and thereby fuels a positive feedback process that leads to further warming and thaw1. Despite widespread permafrost degradation during the past 40 years2,3,4, the degree to which permafrost thaw may be contributing to a feedback between warming and thaw in recent decades is not well understood. Radiocarbon evidence of modern emissions of ancient permafrost carbon is also sparse5. Here we combine radiocarbon dating of lake bubble trace-gas methane (113 measurements) and soil organic carbon (289 measurements) for lakes in Alaska, Canada, Sweden and Siberia with numerical modelling of thaw and remote sensing of thermokarst shore expansion. Methane emissions from thermokarst areas of lakes that have expanded over the past 60 years were directly proportional to the mass of soil carbon inputs to the lakes from the erosion of thawing permafrost. Radiocarbon dating indicates that methane age from lakes is nearly identical to the age of permafrost soil carbon thawing around them. Based on this evidence of landscape-scale permafrost carbon feedback, we estimate that 0.2 to 2.5 Pg permafrost carbon was released as methane and carbon dioxide in thermokarst expansion zones of pan-Arctic lakes during the past 60 years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methane ebullition in 60-year thermokarst expansion zones (solid bars) and stable open-water zones (non-solid bars) in glacial (blue), yedoma thermokarst (grey) and non-yedoma thermokarst (red) lakes.
Figure 2: Relationships between the quantity and age of soil organic carbon (SOC) input to thermokarst-affected lakes and methane emissions from lakes.
Figure 3: Modelled emissions of permafrost soil carbon (methane plus carbon dioxide) to the atmosphere during the Holocene and this century.

Similar content being viewed by others

References

  1. Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D. & Chapin, F. S. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443, 71–75 (2006).

    Google Scholar 

  2. Romanovsky, V. E. et al. Thermal state of permafrost in Russia. Permafrost Periglac. 21, 136–155 (2010).

    Google Scholar 

  3. Romanovsky, V., Smith, S. & Christiansen, H. Permafrost thermal state in the polar Northern Hemisphere during the International Polar Year 2007–2009 A synthesis. Permafrost Periglac. 21, 106–116 (2010).

    Google Scholar 

  4. Smith, S. et al. Thermal state of permafrost in North America: a contribution to the international polar year. Permafrost Periglac. 21, 117–135 (2010).

    Google Scholar 

  5. Schuur, E. A. G. et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556–559 (2009).

    Google Scholar 

  6. Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).

    Google Scholar 

  7. Walter Anthony, K. M. et al. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511, 452–456 (2014).

    Google Scholar 

  8. Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    Article  Google Scholar 

  9. Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G. & Witt, R. The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9, 085003 (2014).

    Google Scholar 

  10. Koven, C. D. et al. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Phil. Trans. R. Soc. A. 373, 20140423 (2015).

    Google Scholar 

  11. Lawrence, D. M., Slater, A. G., Romanovsky, V. E. & Nicolsky, D. J. Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter. J. Geophys. Res. Earth Surf. 113, F02011 (2008).

    Google Scholar 

  12. Jorgenson, M. T., Shur, Y. L. & Pullman, E. R. Abrupt increase in permafrost degradation in Arctic Alaska. Geophys. Res. Lett. 33, L02503 (2006).

    Google Scholar 

  13. Nowinski, N. S., Taneva, L., Trumbore, S. E. & Welker, J. M. Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment. Oecologia 163, 785–792 (2010).

    Google Scholar 

  14. Treat, C. C. et al. A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations. Glob. Change Biol. 21, 2797–2803 (2015).

    Google Scholar 

  15. Drake, T. W., Wickland, K. P., Spencer, R. G. M., McKnight, D. M. & Striegl, R. G. Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw. Proc. Natl Acad. Sci. USA 112, 13946–13951 (2015).

    Google Scholar 

  16. Hicks Pries, C., Schuur, E. A. G., Natali, S. M. & Crummer, K. G. Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra. Nat. Clim. Change 6, 214–218 (2015).

    Google Scholar 

  17. Vonk, J. E. et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature 489, 137–140 (2012).

    Google Scholar 

  18. Mann, P. J. et al. Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks. Nat. Commun. 6, 7856 (2015).

    Google Scholar 

  19. O’Donnell, J. A. et al. The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland. Ecosystems 15, 213–229 (2012).

    Google Scholar 

  20. Zimov, S. A. et al. North Siberian lakes: a methane source fueled by Pleistocene carbon. Science 277, 800–802 (1997).

    Google Scholar 

  21. Walter, K. M., Chanton, J. P., Chapin, F. S., Schuur, E. A. G. & Zimov, S. A. Methane production and bubble emissions from arctic lakes: isotopic implications for source pathways and ages. J. Geophys. Res. Biogeosci. 113, G00A08 (2008).

    Google Scholar 

  22. Heslop, J. K. et al. Thermokarst-lake methane production potentials along a full talik profile. Biogeosciences 12, 4317–4331 (2015).

    Google Scholar 

  23. Tan, Z., Zhuang, Q. & WalterAnthony, K. M. Modeling methane emissions from Arctic lakes: model development and site-level study. J. Adv. Model. Earth Sy. 7, 459–483 (2015).

    Google Scholar 

  24. Brosius, L. S. et al. Using the deuterium isotope composition of permafrost melt water to constrain thermokarst lake contributions to atmospheric CH4 during the last deglaciation. J. Geophys. Res. Biogeosci. 117, G01022 (2012).

    Google Scholar 

  25. Kessler, M. A., Plug, L. & Walter Anthony, K. Simulating the decadal to millennial scale dynamics of morphology and sequestered carbon mobilization of two thermokarst lakes in N. W. Alaska. J. Geophys. Res. Biogeosci. 117, G00M06 (2012).

    Google Scholar 

  26. Kaufman, D. et al. Holocene thermal maximum in the western Arctic (0–180° W). Quat. Sci. Rev. 23, 529–560 (2004).

    Google Scholar 

  27. Jorgenson, M. T. et al. Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes. Environ. Res. Lett. 8, 035017 (2013).

    Google Scholar 

  28. Vandenberghe, J. et al. The Last Permafrost Maximum (LPM) map of the Northern Hemisphere: permafrost extent and mean annual air temperatures, 25–17 ka BP. Boreas 43, 652–666 (2014).

    Google Scholar 

  29. Schneider von Deimling, T. et al. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity. Biogeosciences 12, 3469–3488 (2015).

    Google Scholar 

  30. IPCC Summary for Policymakers in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2014).

  31. Murton, J. B. et al. Palaeoenvironmental interpretation of Yedoma Silt (Ice Complex) deposition as Cold-Climate Loess, Duvanny Yar, Northeast Siberia. Permafrost Periglac. 26, 208–288 (2015).

    Google Scholar 

  32. Grosse, G., Jones, B. & Arp, C. in Treatise on Geomorphology Vol. 8 (ed. Shroder, J. F.) 325–353 (Academic, 2013).

    Google Scholar 

  33. Wik, M., Varner, R., Walter Anthony, K., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–105 (2016).

    Google Scholar 

  34. Scandella, B. P., Varadharajan, C., Hemond, H. F., Ruppel, C. & Juanes, R. A conduit dilation model of methane venting from lake sediments. Geophys. Res. Lett. 38, L06408 (2011).

    Google Scholar 

  35. Greene, S., Walter Anthony, K. M., Archer, D., Sepulveda-Jauregui, A. & Martinez-Cruz, K. Modeling the impediment of methane ebullition bubbles by seasonal lake ice. Biogeosciences 11, 6791–6811 (2014).

    Google Scholar 

  36. Walter Anthony, K. M. et al. Estimating methane emissions from northern lakes using ice bubble surveys. Limnol. Oceanogr. Meth. 8, 592–609 (2010).

    Google Scholar 

  37. Walter Anthony, K. M. & Anthony, P. Constraining spatial variability of methane ebullition seeps in thermokarst lakes using point process models. J. Geophys. Res. Biogeosci. 118, 1015–1034 (2013).

    Google Scholar 

  38. Zimov, S. A. et al. in Permafrost Response on Economic Development, Environmental Security and Natural Resources (eds Paepe, R. & Melnikov, V. P.) 511–524 (NATO Science Series 2, 76, Kluwer Academic, 2001).

    Google Scholar 

  39. Chanton, J. P. et al. Radiocarbon evidence for the importance of surface vegetation on fermentation and methanogenesis in contrasting types of boreal peatlands. Glob. Biogeochem. Cy 22, GB4022 (2008).

    Google Scholar 

  40. Vogel, J. S., Turteltaub, K. W., Finkel, R. & Nelson, D. E. Accelerator mass spectrometry. Anal. Chem. 67, 353A–359A (1995).

    Google Scholar 

  41. Strauss, J. et al. The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska. Geophys. Res. Lett. 40, 6165–6170 (2013).

    Google Scholar 

  42. Soil Survey Staff Keys to Soil Taxonomy 10th edn USDA-Natural Resources Conservation Service (USDA-Natural Resources Conservation Service, 2016).

  43. Ping, C. L. Gelisols: Part II. Classification and related issues. Soil Horiz. 54, http://dx.doi.org/10.2136/sh2013-54-4-gc (2013).

  44. Dean, W. E. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J. Sed. Petr. 44, 242–248 (1974).

    Google Scholar 

  45. Michaelson, G. J., Ping, C. L. & Clark, M. H. Soil pedon carbon and nitrogen data for Alaska: an analysis and update. Open J. Soil Sci. 3, 132–142 (2013).

    Google Scholar 

  46. Bauer, I. E., Bhatti, J. S., Cash, K. J. & Tarnocai, C. Developing statistical models to estimate the carbon density of organic soils. Can. J. Soil Sci. 86, 295–304 (2006).

    Google Scholar 

  47. Hamilton, T. D., Craig, J. L. & Sellmann, P. V. The Fox permafrost tunnel “A late Quaternary geologic record in central Alaska”. Geol. Soc. Am. Bull. 100, 948–969 (1988).

    Google Scholar 

  48. Harden, J. W. et al. Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys. Res. Lett. 39, L15704 (2012).

    Google Scholar 

  49. Hugelius, G. et al. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst. Sci. Data 5, 3–13 (2013).

    Google Scholar 

  50. Jones, B. M. et al. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. J. Geophys. Res. Biogeosci. 116, G00M03 (2011).

    Google Scholar 

  51. Tarasenko, T. V. Interannual variations in the areas of Thermokarst lakes in Central Yakutia. Water Res. 40, 111–119 (2013).

    Google Scholar 

  52. West, J. J. & Plug, L. J. Time-dependent morphology of thaw lakes and taliks in deep and shallow ground ice. J. Geophys. Res. Earth Surf. 113, F01009 (2008).

    Google Scholar 

  53. Rampton, V. N. in Research in Polar and Alpine Geomorphology. Third Guelph Symposium on Geomorphology 1973 (eds Fahey, B. & Thompson, R. D.) 43–59 (1974).

    Google Scholar 

  54. Bockheim, J. G., Everett, L. R., Hinkel, K. M., Nelson, F. E. & Brown, J. Soil organic carbon storage and distribution in arctic tundra, Barrow, Alaska. Soil Sci. Soc. Am. J. 63, 934–940 (1999).

    Google Scholar 

  55. Jorgenson, T. et al. Permafrost characteristics of Alaska In Proc. 9th Int. Conf. Permafrost map in scale 1:7,000,000 (eds Kane, D. L. & Hinkel, K. M.) (Institute of Northern Engineering, 2008).

    Google Scholar 

  56. Kanevskiy, M., Shur, Y., Fortier, D., Jorgenson, M. T. & Stephani, E. Cryostratigraphy of late Pleistocene syngenetic permafrost (yedoma) in northern Alaska, Itkillik River exposure. Quat. Res. 75, 584–596 (2011).

    Google Scholar 

  57. Kanevskiy, M., Dillon, M., Stephani, E. & O’Donnell, J. In Proc. 10th Int. Conf. Permafrost 191–196 (2012).

    Google Scholar 

  58. Kanevskiy, M. et al. Cryostratigraphy and permafrost evolution in the lacustrine Lowlands of West-Central Alaska. Permafrost Periglac. 25, 14–34 (2014).

    Google Scholar 

  59. Ulrich, M., Grosse, G., Strauss, J. & Schirrmeister, L. Quantifying wedge-ice volumes in yedoma and thermokarst basin deposits. Permafrost Periglac. 25, 151–161 (2014).

    Google Scholar 

  60. Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2009); http://www.R-project.org

    Google Scholar 

Download references

Acknowledgements

We thank B. Jones at the USGS for contributions to remote sensing data sets and for providing valuable comments on the manuscript, C. Koven for model data contributions in Fig. 3, and Ted Schuur for assistance with AMS radiocarbon dating. This work was supported by the NSF ARC-1304823, NASA ABoVE NNX15AU49A, NSF OPP-1107892, NSF ARCSS 1500931, USDA-Hatch, US Department of Energy DESC0010580 and ERC.

Author information

Authors and Affiliations

Authors

Contributions

K.W.A. conceived of the study and wrote the paper. K.W.A., P.A., C.-L.P. and G.G. conducted field and lab work. R.D. and T.S.v.D. performed numerical modelling. Isotopic analyses were conducted in the laboratory of J.P.C. All authors commented on the analysis, interpretation and presentation of the data, and were involved in the writing.

Corresponding author

Correspondence to Katey Walter Anthony.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1176 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walter Anthony, K., Daanen, R., Anthony, P. et al. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nature Geosci 9, 679–682 (2016). https://doi.org/10.1038/ngeo2795

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2795

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing