Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Biomass turnover time in terrestrial ecosystems halved by land use

Abstract

The terrestrial carbon cycle is not well quantified1. Biomass turnover time is a crucial parameter in the global carbon cycle2,3,4, and contributes to the feedback between the terrestrial carbon cycle and climate2,3,4,5,6,7. Biomass turnover time varies substantially in time and space, but its determinants are not well known8,9, making predictions of future global carbon cycle dynamics uncertain5,10,11,12,13. Land use—the sum of activities that aim at enhancing terrestrial ecosystem services14—alters plant growth15 and reduces biomass stocks16, and is hence expected to affect biomass turnover. Here we explore land-use-induced alterations of biomass turnover at the global scale by comparing the biomass turnover of the actual vegetation with that of a hypothetical vegetation state with no land use under current climate conditions. We find that, in the global average, biomass turnover is 1.9 times faster with land use. This acceleration affects all biomes roughly equally, but with large differences between land-use types. Land conversion, for example from forests to agricultural fields, is responsible for 59% of the acceleration; the use of forests and natural grazing land accounts for 26% and 15% respectively. Reductions in biomass stocks are partly compensated by reductions in net primary productivity. We conclude that land use significantly and systematically affects the fundamental trade-off between carbon turnover and carbon stocks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global human acceleration of biomass turnover, spatial pattern, histogram and latitudinal profiles.
Figure 2: Land-use-induced acceleration of biomass turnover.

Similar content being viewed by others

References

  1. Bloom, A. A., Exbrayat, J.-F., Velde, I. R., van der Feng, L. & Williams, M. The decadal state of the terrestrial carbon cycle: global retrievals of terrestrial carbon allocation, pools, and residence times. Proc. Natl Acad. Sci. USA 113, 1285–1290 (2016).

    Article  Google Scholar 

  2. Körner, C. Biosphere responses to CO2 enrichment. Ecol. Appl. 10, 1590–1619 (2000).

    Google Scholar 

  3. Odum, E. P. Fundamentals of Ecology Vol. 3 (Saunders, 1971).

    Google Scholar 

  4. Saugier, B., Roy, J. & Mooney, H. A. in Terrestrial Global Productivity (eds Roy, J., Saugier, B. & Mooney, H. A.) 543–557 (Academic, 2001).

    Book  Google Scholar 

  5. Malhi, Y. The productivity, metabolism and carbon cycle of tropical forest vegetation. J. Ecol. 100, 65–75 (2012).

    Article  Google Scholar 

  6. Körner, C. et al. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2 . Science 309, 1360–1362 (2005).

    Article  Google Scholar 

  7. Barrett, D. J. Steady state turnover time of carbon in the Australian terrestrial biosphere. Glob. Biogeochem. Cycles 16, 55 (2002).

    Article  Google Scholar 

  8. Carvalhais, N. et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 514, 213–217 (2014).

    Article  Google Scholar 

  9. Keeling, H. C. & Phillips, O. L. The global relationship between forest productivity and biomass. Glob. Ecol. Biogeogr. 16, 618–631 (2007).

    Article  Google Scholar 

  10. Friend, A. D. et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2 . Proc. Natl Acad. Sci. USA 111, 3280–3285 (2014).

    Article  Google Scholar 

  11. Negrón-Juárez, R. I., Koven, C. D., Riley, W. J., Knox, R. G. & Chambers, J. Q. Observed allocations of productivity and biomass, and turnover times in tropical forests are not accurately represented in CMIP5 Earth system models. Environ. Res. Lett. 10, 64017 (2015).

    Article  Google Scholar 

  12. Delbart, N. et al. Mortality as a key driver of the spatial distribution of aboveground biomass in Amazonian forest: results from a dynamic vegetation model. Biogeosciences 7, 3027–3039 (2010).

    Article  Google Scholar 

  13. Wang, W. et al. Diagnosing and assessing uncertainties of terrestrial ecosystem models in a multimodel ensemble experiment: 2. Carbon balance. Glob. Change Biol. 17, 1367–1378 (2011).

    Article  Google Scholar 

  14. Erb, K.-H. et al. A comprehensive global 5 min resolution land-use data set for the year 2000 consistent with national census data. J. Land Use Sci. 2, 191–224 (2007).

    Article  Google Scholar 

  15. Haberl, H., Erb, K.-H. & Krausmann, F. Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annu. Rev. Environ. Res. 39, 363–391 (2014).

    Article  Google Scholar 

  16. Egglestone, H. S., Buendia, L., Miwa, K. & Ngara, T. IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme (IGES, 2006).

    Google Scholar 

  17. Körner, C. Paradigm shift in plant growth control. Curr. Opin. Plant Biol. 25, 107–114 (2015).

    Article  Google Scholar 

  18. Galbraith, D. et al. Residence times of woody biomass in tropical forests. Plant Ecol. Diver. 6, 139–157 (2013).

    Article  Google Scholar 

  19. Ahlström, A., Xia, J., Arneth, A., Luo, Y. & Smith, B. Importance of vegetation dynamics for future terrestrial carbon cycling. Environ. Res. Lett. 10, 54019 (2015).

    Article  Google Scholar 

  20. Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in Earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942–12947 (2007).

    Article  Google Scholar 

  21. Krausmann, F. et al. Global human appropriation of net primary production doubled in the 20th century. Proc. Natl Acad. Sci. USA 110, 10324–10329 (2013).

    Article  Google Scholar 

  22. Luyssaert, S. et al. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nature Clim. Change 4, 389–393 (2014).

    Article  Google Scholar 

  23. DeFries, R. Past and future sensitivity of primary production to human modification of the landscape. Geophys. Res. Lett. 29, 1132 (2002).

    Article  Google Scholar 

  24. Pongratz, J., Reick, C., Raddatz, T. & Claussen, M. Effects of anthropogenic land cover change on the carbon cycle of the last millennium. Glob. Biogeochem. Cycles 23, GB4001 (2009).

    Article  Google Scholar 

  25. Don, A., Schumacher, J. & Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Glob. Change Biol. 17, 1658–1670 (2011).

    Article  Google Scholar 

  26. Global Forest Resources Assessment 2010 Main Report (FAO, 2010).

  27. Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: the great acceleration. Anthrop. Rev. 2, 81–98 (2015).

    Article  Google Scholar 

  28. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    Article  Google Scholar 

  29. Campioli, M. et al. Biomass production efficiency controlled by management in temperate and boreal ecosystems. Nature Geosci. 8, 843–846 (2015).

    Article  Google Scholar 

  30. Thurner, M. et al. Carbon stock and density of northern boreal and temperate forests. Glob. Ecol. Biogeogr. 23, 297–310 (2014).

    Article  Google Scholar 

  31. Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).

    Article  Google Scholar 

  32. Luyssaert, S. et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob. Change Biol. 13, 2509–2537 (2007).

    Article  Google Scholar 

  33. Bond-Lamberty, B. & Thomson, A. A global database of soil respiration data. Biogeosciences 7, 1915–1926 (2010).

    Article  Google Scholar 

  34. Noormets, A. et al. Effects of forest management on productivity and carbon sequestration: a review and hypothesis. Forest Ecol. Manag. 355, 124–140 (2015).

    Article  Google Scholar 

  35. Michaletz, S. T., Cheng, D., Kerkhoff, A. J. & Enquist, B. J. Convergence of terrestrial plant production across global climate gradients. Nature 512, 39–43 (2014).

    Article  Google Scholar 

  36. Fang, J. et al. Overestimated biomass carbon pools of the northern mid- and high latitude forests. Clim. Change 74, 355–368 (2006).

    Article  Google Scholar 

  37. Brown, S. & Lugo, A. E. Biomass of tropical forests: a new estimate based on forest volumes. Science 223, 1290–1293 (1984).

    Article  Google Scholar 

  38. Brown, S. Estimating Biomass and Biomass Change of Tropical Forests: A Primer (Food & Agriculture Org., 1997).

    Google Scholar 

  39. Bartholomé, E. & Belward, A. S. GLC2000: a new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 26, 1959–1977 (2005).

    Article  Google Scholar 

  40. Sanderson, E. W. et al. The human footprint and the last of the wild. BioScience 52, 891–904 (2002).

    Article  Google Scholar 

  41. Statistical Databases (FAOSTAT, accessed 13 October 2014); http://faostat.fao.org

  42. FAO Global Ecological Zoning for the Global Forest Resources Assessment, 2000 (Food and Agriculture Organization of the United Nations, 2001).

  43. Ramankutty, N. & Foley, J. A. Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob. Biogeochem. Cycles 13, 997–1027 (1999).

    Article  Google Scholar 

  44. DiMiceli, C. M. et al. Vegetation Continuous Fields MOD44B 20011 Percent Tree Cover, Collection 5. (University of Maryland, accessed 10 October 2014); http://glcf.umd.edu/data/vcf

  45. Lieth, H. Primary Productivity of the Biosphere 237–263 (Springer, 1975).

    Book  Google Scholar 

  46. Bondeau, A. et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Change Biol. 13, 679–706 (2007).

    Article  Google Scholar 

  47. Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W. & Sitch, S. Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model. J. Hydrol. 286, 249–270 (2004).

    Article  Google Scholar 

  48. Sitch, S. et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob. Change Biol. 14, 2015–2039 (2008).

    Article  Google Scholar 

  49. Ciais, P. et al. The European carbon balance. Part 2: croplands. Glob. Change Biol. 16, 1409–1428 (2010).

    Article  Google Scholar 

  50. Krausmann, F., Erb, K.-H., Gingrich, S., Lauk, C. & Haberl, H. Global patterns of socioeconomic biomass flows in the year 2000: a comprehensive assessment of supply, consumption and constraints. Ecol. Econ. 65, 471–487 (2008).

    Article  Google Scholar 

  51. Oldeman, L. R., Hakkeling, R. T. A. & Sombrock, W. G. World Map of the Status of Human—Induced Soil Degradation (ISRIC Wageningen, 1991).

    Google Scholar 

  52. Zika, M. & Erb, K. H. The global loss of net primary production resulting from human-induced soil degradation in drylands. Ecol. Econ. 69, 310–318 (2009).

    Article  Google Scholar 

  53. Haberl, H. et al. Changes in ecosystem processes induced by land use: human appropriation of aboveground NPP and its influence on standing crop in Austria. Glob. Biogeochem. Cycles 15, 929–942 (2001).

    Article  Google Scholar 

  54. O’Neill, D. W., Tyedmers, P. H. & Beazley, K. F. Human appropriation of net primary production (HANPP) in Nova Scotia, Canada. Reg. Environ. Change 7, 1–14 (2006).

    Article  Google Scholar 

  55. Harmon, M. E., Ferrell, W. K. & Franklin, J. F. Effects on carbon storage of conversion of old-growth forests to young forests. Science 247, 699–702 (1990).

    Article  Google Scholar 

  56. Ryan, M. G., Binkley, D. & Fownes, J. H. Age-related decline in forest productivity. Adv. Ecol. Res. 27, 213–262 (1997).

    Article  Google Scholar 

  57. Zaehle, S. et al. The importance of age-related decline in forest NPP for modeling regional carbon balances. Ecol. Appl. 16, 1555–1574 (2006).

    Article  Google Scholar 

  58. Saikku, L., Mattila, T., Akujärvi, A. & Liski, J. Human appropriation of net primary production in Finland during 1990–2010. Biomass Bioenergy 83, 559–567 (2015).

    Article  Google Scholar 

  59. Larocque, G. R. Ecological Forest Management Handbook (CRC, 2016).

    Book  Google Scholar 

  60. Olson, J. S., Watts, J. A. & Allison, L. J. Carbon in Live Vegetation of Major World Ecosystems (Oak Ridge National Laboratory, 1983).

    Google Scholar 

  61. Cannell, M. G. R. World Forest Biomass and Primary Production Data 67 (Academic, 1982).

    Google Scholar 

  62. Ajtay, G. L., Ketner, P. & Duvigneaud, P. The Global Carbon Cycle. SCOPE 13 129–182 (Wiley, 1979).

    Google Scholar 

  63. Ruesch, A. & Gibbs, H. K. New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000 (Oak Ridge National Laboratory, accessed 15 January 2015); http://cdiac.ornl.gov/epubs/ndp/global_carbon/carbon_documentation.html

  64. Amthor, J. S. et al. Boreal forest CO2 exchange and evapotranspiration predicted by nine ecosystem process models: intermodel comparisons and relationships to field measurements. J. Geophys. Res. 106, 33623–33648 (2001).

    Article  Google Scholar 

  65. Gower, S. T. et al. Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada. J. Geophys. Res. 102, 29029–29041 (1997).

    Article  Google Scholar 

  66. Jarvis, P. G., Saugier, B. & Schulze, E.-D. in Terrestrial Global Productivity (eds Roy, J., Saugier, B. & Mooney, H. A.) 211–244 (Academic, 2001).

    Book  Google Scholar 

  67. Pan, Y. et al. A large and persistent carbon sink in the World’s forests. Science 333, 988–993 (2011).

    Article  Google Scholar 

  68. Kauppi, P. E. New, low estimate for carbon stock in global forest vegetation based on inventory data. Silva Fenn. 37, 451–457 (2003).

    Article  Google Scholar 

  69. MacDicken, K. G. Global Forest Resources Assessment 2015: What, why and how? Forest Ecol. Manag. 352, 3–8 (2015).

    Article  Google Scholar 

  70. Clark, D. B. & Kellner, J. R. Tropical forest biomass estimation and the fallacy of misplaced concreteness. J. Veg. Sci. 23, 1191–1196 (2012).

    Article  Google Scholar 

  71. Houghton, R. A., Lawrence, K. T., Hackler, J. L. & Brown, S. The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates. Glob. Change Biol. 7, 731–746 (2001).

    Article  Google Scholar 

  72. Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. 116, G04021 (2011).

    Article  Google Scholar 

  73. Nogueira, E. M., Fearnside, P. M., Nelson, B. W., Barbosa, R. I. & Keizer, E. W. H. Estimates of forest biomass in the Brazilian Amazon: new allometric equations and adjustments to biomass from wood-volume inventories. Forest Ecol. Manag. 256, 1853–1867 (2008).

    Article  Google Scholar 

  74. Feldpausch, T. R. et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9, 3381–3403 (2012).

    Article  Google Scholar 

  75. Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).

    Article  Google Scholar 

  76. Lefsky, M. A. et al. Lidar remote sensing of above-ground biomass in three biomes. Global Ecol. Biogeogr. 11, 393–399 (2002).

    Article  Google Scholar 

  77. Drake, J. B. et al. Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sens. Environ. 79, 305–319 (2002).

    Article  Google Scholar 

  78. Asner, G. P. High-resolution forest carbon stocks and emissions in the Amazon. Proc. Natl Acad. Sci. USA 107, 16738–16742 (2010).

    Article  Google Scholar 

  79. Mitchard, E. T. et al. Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps. Carbon Balance Manag. 8, 10 (2013).

    Article  Google Scholar 

  80. Mitchard, E. T. A. et al. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. Glob. Ecol. Biogeogr. 23, 935–946 (2014).

    Article  Google Scholar 

  81. Saatchi, S. et al. Seeing the forest beyond the trees. Glob. Ecol. Biogeogr. 24, 606–610 (2015).

    Article  Google Scholar 

  82. Kindermann, G. E., McCallum, I., Fritz, S. & Obersteiner, M. A global forest growing stock, biomass and carbon map based on FAO statistics. Silva Fenn. 42, 387–396 (2008).

    Article  Google Scholar 

  83. Bolin, B. in The Greenhouse Effect, Climatic Change, and Ecosystems. SCOPE 29 (eds Bolin, B., Döös, B. R., Jäger, J. & Warrick, R. A.) 93–155 (Wiley, 1986).

    Google Scholar 

  84. Pan, Y., Birdsey, R. A., Phillips, O. L. & Jackson, R. B. The structure, distribution, and biomass of the World’s forests. Annu. Rev. Ecol. Evol. Syst. 44, 593–622 (2013).

    Article  Google Scholar 

  85. Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Clim. Change 2, 182–185 (2012).

    Article  Google Scholar 

  86. Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).

    Article  Google Scholar 

  87. Zhao, M., Heinsch, F. A., Nemani, R. R. & Running, S. W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 95, 164–176 (2005).

    Article  Google Scholar 

  88. West, P. C. et al. Trading carbon for food: global comparison of carbon stocks versus crop yields on agricultural land. Proc. Natl Acad. Sci. USA 107, 19645–19648 (2010).

    Article  Google Scholar 

  89. Ang, B. W. The LMDI approach to decomposition analysis: a practical guide. Energy Policy 33, 867–871 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding from the European Research Council (ERC-2010-stg-263522 ‘LUISE’), the European Commission (H2020-EO-2014-640176 ‘BACI’), and the ProVision Programme of the Austrian Ministry of Science. We thank M. Thurner for providing the temperate–boreal woody carbon stock data set (ref. 30). This research contributes to the Global Land Project (www.globallandproject.org).

Author information

Authors and Affiliations

Authors

Contributions

K.-H.E., T.F., C.P. and H.H. designed the study. K.-H.E., T.F., T.K. and C.P. performed the empirical research. All authors contributed significantly to the final analysis, interpretation or results and writing of the manuscript.

Corresponding author

Correspondence to Karl-Heinz Erb.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1178 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erb, KH., Fetzel, T., Plutzar, C. et al. Biomass turnover time in terrestrial ecosystems halved by land use. Nature Geosci 9, 674–678 (2016). https://doi.org/10.1038/ngeo2782

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2782

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing