Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Earthquake nucleation in weak subducted carbonates

Abstract

Ocean-floor carbonate- and clay-rich sediments form major inputs to subduction zones, especially at low-latitude convergent plate margins. Therefore, knowledge of their frictional behaviour is fundamental for understanding plate-boundary earthquakes. Here we report results of mechanical tests performed on simulated fault gouges prepared from ocean-floor carbonates and clays, cored during IODP drilling offshore Costa Rica. Clay-rich gouges show internal friction coefficients (that is, the slope of linearized shear stress versus normal stress data) of μint = 0.44 − 0.56, irrespective of temperature and pore-fluid pressure (Pf). By contrast, μint for the carbonate gouge strongly depends on temperature and pore-fluid pressure, with μint decreasing dramatically from 0.84 at room temperature and Pf = 20 MPa to 0.27 at T = 140 °C and Pf = 120 MPa. This effect provides a fundamental mechanism of shear localization and earthquake generation in subduction zones, and makes carbonates likely nucleation sites for plate-boundary earthquakes. Our results imply that rupture nucleation is prompted by a combination of temperature-controlled frictional instability and temperature- and pore-pressure-dependent weakening of calcareous fault gouges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative records of velocity-stepping experiments.
Figure 2: Mechanical data of hemipelagic silty clay (upper panels) and calcareous ooze (lower panels), deformed under varying experimental conditions.
Figure 3: Backscattered electron images of experimentally deformed calcareous ooze gouge.
Figure 4: Schematic sections across the forearc wedge of the Central American Subduction Zone offshore Costa Rica.

Similar content being viewed by others

References

  1. Archer, D. E. An atlas of the distribution of calcium carbonate in sediments of the deep sea. Glob. Biogeochem. Cycles 10, 159–174 (1996).

    Article  Google Scholar 

  2. Byrne, D. E., Davis, D. M. & Sykes, L. R. Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zones. Tectonics 7, 833–857 (1988).

    Article  Google Scholar 

  3. Toshiko, S., Seno, T. & Uyeda, S. A simple rheological framework for comparative subductology. Relating Geophys. Struct. Process. 76, 39–52 (1993).

    Google Scholar 

  4. Hyndman, R. D. & Wang, K. Thermal constraints on the zone of major thrust earthquake failure—the cascadia subduction zone. J. Geophys. Res. 98, 2039–2060 (1993).

    Article  Google Scholar 

  5. Moreno, M. et al. Locking of the Chile subduction zone controlled by fluid pressure before the 2010 earthquake. Nature Geosci. 7, 292–296 (2014).

    Article  Google Scholar 

  6. Audet, P., Bostock, M. G., Christensen, N. I. & Peacock, S. M. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature 457, 76–78 (2009).

    Article  Google Scholar 

  7. Ito, Y., Obara, K., Matsuzawa, T. & Maeda, T. Very low frequency earthquakes related to small asperities on the plate boundary interface at the locked to aseismic transition. J. Geophys. Res. 114, B00A13 (2009).

    Article  Google Scholar 

  8. Brown, K. M., Tryon, M. D., DeShon, H. R., Dorman, L. M. & Schwartz, S. Y. Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone. Earth Planet. Sci. Lett. 238, 189–203 (2004).

    Article  Google Scholar 

  9. DenHartog, S. A. M., Niemeijer, A. R. & Spiers, C. J. New constraints on megathrust slip stability under subduction zone P-T conditions. Earth Planet. Sci. Lett. 353, 240–252 (2012).

    Article  Google Scholar 

  10. DenHartog, S. A. M., Peach, C. J., de Winter, D. A. M., Spiers, C. J. & Shimamoto, T. Frictional properties of megathrust fault gouges at low sliding velocities: new data on effects of normal stress and temperature. J. Struct. Geol. 38, 156–171 (2012).

    Article  Google Scholar 

  11. Namiki, Y., Tsutsumi, A., Ujiie, K. & Kameda, J. Frictional properties of sediments entering the Costa Rica subduction zone offshore the Osa Peninsula: implications for fault slip in shallow subduction zones. Earth Planet. Space 66, 72 (2014).

    Article  Google Scholar 

  12. Saffer, D. M. & Marone, C. Comparison of smectite- and illite-rich gouge frictional properties: application to the updip limit of the seismogenic zone along subduction megathrusts. Earth Planet. Sci. Lett. 215, 219–235 (2003).

    Article  Google Scholar 

  13. Ikari, M. J., Niemeijer, A. R., Spiers, C. J., Kopf, A. J. & Saffer, D. M. Experimental evidence linking slip instability with seafloor lithology and topography at the Costa Rica convergent margin. Geology 41, 891–894 (2013).

    Article  Google Scholar 

  14. Ikari, M. J., Saffer, D. M. & Marone, C. Effect of hydration state on the frictional properties of montmorillonite-based fault gouge. J. Geophys. Res. 112, B06423 (2007).

    Article  Google Scholar 

  15. Morrow, C. A., Shi, C. & Byerlee, J. D. Strain-hardening and strength of clay-rich fault gouges. J. Geophys. Res. 87, 6771–6780 (1982).

    Article  Google Scholar 

  16. Ranero, C. R. & von Huene, R. Subduction erosion along the Middle America convergent margin. Nature 404, 748–752 (2000).

    Article  Google Scholar 

  17. Clift, P. & Vannucchi, P. Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev. Geophys. 42, RG2001 (2004).

    Article  Google Scholar 

  18. Ranero, C. R. et al. A cross section of the convergent Pacific margin of Nicaragua. Tectonics 19, 335–357 (2000).

    Article  Google Scholar 

  19. Langseth, M. G., Cann, J. R., Natland, J. H. & Hobart, M. Geothermal phenomena at the Costa-Rica Rift—background and objectives for drilling at deep-sea drilling Project Site-501, Site-504, and Site-505. Initial Rep. Deep Sea Drill. Project 69, 5–29 (1983).

    Google Scholar 

  20. von Huene, R. et al. A summary of Deep Sea Drilling Project Leg 67 shipboard results from the Mid-America Trench transect off Guatemala. Geol. Soc. 10, 121–129 (1982).

    Article  Google Scholar 

  21. Expedition 344 Scientists Costa Rica Seismogenesis Project, Program A Stage 2 (CRISP-A2): sampling and quantifying lithologic inputs and fluid inputs and outputs of the seismogenic zone. IODP Prel. Rept. 344, 1–81 (2013).

  22. Niemeijer, A. R., Spiers, C. J. & Peach, C. J. Frictional behaviour of simulated quartz fault gouges under hydrothermal conditions: results from ultra-high strain rotary shear experiments. Tectonophysics 460, 288–303 (2008).

    Article  Google Scholar 

  23. Dieterich, J. H. Modeling of rock friction: 1. Experimental results and constitutive equations. J. Geophys. Res. 84, 2161 (1979).

    Article  Google Scholar 

  24. Ruina, A. Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359–10370 (1983).

    Article  Google Scholar 

  25. Gu, J.-C., Rice, J. R., Ruina, A. L. & Tse, S. T. Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction. J. Mech. Phys. Solids 32, 167–196 (1984).

    Article  Google Scholar 

  26. Brace, W. F. & Byerlee, J. D. Stick-slip as a mechanism for earthquakes. Science 153, 990–992 (1966).

    Article  Google Scholar 

  27. Verberne, B. A., Plümper, O., de Winter, D. A. M. & Spiers, C. J. Superplastic nanofibrous slip zones control seismogenic fault friction. Science 346, 1342–1344 (2014).

    Article  Google Scholar 

  28. Niemeijer, A. R. & Spiers, C. J. A microphysical model for strong velocity weakening in phyllosilicate-bearing fault gouges. J. Geophys. Res. 112, B10405 (2007).

    Article  Google Scholar 

  29. Goldsby, D. L. & Tullis, T. E. Low frictional strength of quartz rocks at subseismic slip rates. Geophys. Res. Lett. 29, 1844 (2002).

    Article  Google Scholar 

  30. Nakamura, Y. et al. Amorphization of quartz by friction: implication to silica-gel lubrication of fault surfaces. Geophys. Res. Lett. 39, L21303 (2012).

    Google Scholar 

  31. Di Toro, G., Goldsby, D. L. & Tullis, T. E. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature 427, 436–439 (2004).

    Article  Google Scholar 

  32. Verberne, B. A. et al. Nanocrystalline slip zones in calcite fault gouge show intense crystallographic preferred orientation: crystal plasticity at sub-seismic slip rates at 18–150 °C. Geology 41, 863–866 (2013).

    Article  Google Scholar 

  33. Liteanu, E., Niemeijer, A., Spiers, C. J., Peach, C. J. & de Bresser, J. H. P. The effect of CO2 on creep of wet calcite aggregates. J. Geophys. Res. 117, B03211 (2012).

    Article  Google Scholar 

  34. Faulkner, D. R., Mitchell, T. M., Behnsen, J., Hirose, T. & Shimamoto, T. Stuck in the mud? Earthquake nucleation and propagation through accretionary forearcs. Geophys. Res. Lett. 38, L18303 (2011).

    Article  Google Scholar 

  35. Stipp, M. et al. Strong sediments at the deformation front, and weak sediments at the rear of the Nankai accretionary prism, revealed by triaxial deformation experiments. Geochem. Geophys. Geosyst. 14, 4791–4810 (2013).

    Article  Google Scholar 

  36. Vannucchi, P., Fisher, D. M., Bier, S. & Gardner, T. W. From seamount accretion to tectonic erosion: formation of Osa Mélange and the effects of Cocos Ridge subduction in southern Costa Rica. Tectonics 25, TC2004 (2006).

    Google Scholar 

  37. Kopf, A. Effective strength of incoming sediments and its implications for plate boundary propagation: Nankai and Costa Rica as type examples of accreting vs. erosive convergent margins. Tectonophysics 608, 958–969 (2013).

    Article  Google Scholar 

  38. Shimamoto, T. & Logan, J. M. Effects of simulated clay gouges on the sliding behavior of Tennessee sandston. Tectonophysics 75, 243–255 (1981).

    Article  Google Scholar 

  39. Verberne, B. A., He, C. & Spiers, C. J. Frictional properties of sedimentary rocks and natural fault gouge from the Longmen Shan fault zone, Sichuan, China. Bull. Seismol. Soc. Am. 100, 2767–2790 (2010).

    Article  Google Scholar 

  40. Verberne, B. A. et al. Frictional properties and microstructure of calcite-rich fault gouges sheared at sub-seismic sliding velocities. Pure Appl. Geophys. 171, 2617–2640 (2014).

    Article  Google Scholar 

  41. Saffer, D. M. & Tobin, H. J. Hydrogeology and mechanics of subduction zone forearcs: fluid flow and pore pressure. Annu. Rev. Earth Planet. Sci. 39, 157–186 (2011).

    Article  Google Scholar 

  42. Bekins, B. A. & Dreiss, S. J. A simplified analysis of parameters controlling dewatering in accretionary prisms. Earth Planet. Sci. Lett. 109, 275–287 (1992).

    Article  Google Scholar 

  43. Hyndman, R. D., Yamano, M. & Oleskevich, D. A. The seismogenic zone of subduction thrust faults. Island Arc 6, 244–260 (1997).

    Article  Google Scholar 

  44. Völker, D., Grevemeyer, I., Stipp, M., Wang, K. & He, J. Thermal control of the seismogenic zone of southern central Chile. J. Geophys. Res. 116, B10305 (2011).

    Article  Google Scholar 

  45. Riedel, W. Zur Mechanik geologischer Brucherscheinungen. Zentralbl. Mineral. Geol. Palaeontol 1929B, 354–368 (1929).

    Google Scholar 

  46. Reinen, L. A. & Weeks, J. D. Determination of rock friction constitutive parameters using an iterative least squares inversion method. J. Geophys. Res. 98, 15937–15950 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

This research used data and samples provided by the Integrated Ocean Drilling Program (IODP). M.S. thanks the Shipboard Parties of IODP Expeditions 334 and 344 for their great colleagueship and their commitment aboard DV JOIDES Resolution. R.M.K. greatly appreciated experimental help by M. Sawai, quantitative analysis of diffractograms by R. Kuehn and insight into unpublished data from D. Charpentier. Financial support by Deutsche Forschungsgemeinschaft (DFG) through grant STI298/7-1,2 to M.S. and J.H.B. is kindly acknowledged. A.R.N. is supported by the Netherlands Organisation for Scientific Research (NWO) through a VIDI grant (no. 854.12.011) and by the ERC starting grant SEISMIC (no. 335915).

Author information

Authors and Affiliations

Authors

Contributions

R.M.K. conducted experiments and data analysis in collaboration with A.R.N. M.S. initiated the project. All authors contributed to discussion and writing the manuscript.

Corresponding author

Correspondence to Robert M. Kurzawski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3848 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurzawski, R., Stipp, M., Niemeijer, A. et al. Earthquake nucleation in weak subducted carbonates. Nature Geosci 9, 717–722 (2016). https://doi.org/10.1038/ngeo2774

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2774

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing