Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The tropical Pacific as a key pacemaker of the variable rates of global warming


Global mean surface temperature change over the past 120 years resembles a rising staircase1,2: the overall warming trend was interrupted by the mid-twentieth-century big hiatus and the warming slowdown2,3,4,5,6,7,8 since about 1998. The Interdecadal Pacific Oscillation9,10 has been implicated in modulations of global mean surface temperatures6,11, but which part of the mode drives the variability in warming rates is unclear. Here we present a successful simulation of the global warming staircase since 1900 with a global ocean–atmosphere coupled model where tropical Pacific sea surface temperatures are forced to follow the observed evolution. Without prescribed tropical Pacific variability, the same model, on average, produces a continual warming trend that accelerates after the 1960s. We identify four events where the tropical Pacific decadal cooling markedly slowed down the warming trend. Matching the observed spatial and seasonal fingerprints we identify the tropical Pacific as a key pacemaker of the warming staircase, with radiative forcing driving the overall warming trend. Specifically, tropical Pacific variability amplifies the first warming epoch of the 1910s–1940s and determines the timing when the big hiatus starts and ends. Our method of removing internal variability from the observed record can be used for real-time monitoring of anthropogenic warming.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Annual GMST and its trend.
Figure 2: A spatial fingerprint of the IPO.
Figure 3: A seasonal fingerprint of the IPO.
Figure 4: Estimates of forced GMST anomalies.


  1. Brönnimann, S. Pacemakers of warming. Nature Geosci. 8, 87–89 (2015).

    Article  Google Scholar 

  2. Trenberth, K. E. Has there been a hiatus? Science 349, 691–692 (2015).

    Article  Google Scholar 

  3. Meehl, G. A., Arblaster, J. M., Fasullo, J. T., Hu, A. X. & Trenberth, K. E. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Clim. Change 1, 360–364 (2011).

    Article  Google Scholar 

  4. Kosaka, Y. & Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    Article  Google Scholar 

  5. England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Clim. Change 4, 222–227 (2014).

    Article  Google Scholar 

  6. Dai, A., Fyfe, J. C., Xie, S.-P. & Dai, X. Decadal modulation of global surface temperature by internal climate variability. Nature Clim. Change 5, 555–559 (2015).

    Article  Google Scholar 

  7. Schmidt, G. A., Shindell, D. T. & Tsigaridis, K. Reconciling warming trends. Nature Geosci. 7, 158–160 (2014).

    Article  Google Scholar 

  8. Santer, B. D. et al. Volcanic contribution to decadal changes in tropospheric temperature. Nature Geosci. 7, 185–189 (2014).

    Article  Google Scholar 

  9. Zhang, Y., Wallace, J. M. & Battisti, D. S. ENSO-like interdecadal variability: 1900–93. J. Clim. 10, 1004–1020 (1997).

    Article  Google Scholar 

  10. Power, S., Casey, T., Folland, C., Colman, A. V. & Mehta, V. Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dynam. 15, 319–324 (1999).

    Article  Google Scholar 

  11. Maher, N., Sen Gupta, A. & England, M. H. Drivers of decadal hiatus periods in the 20th and 21st centuries. Geophys. Res. Lett. 41, 5978–5986 (2014).

    Article  Google Scholar 

  12. Fyfe, J. C. et al. Making sense of the early-2000s global warming slowdown. Nature Clim. Change 6, 224–228 (2016).

    Article  Google Scholar 

  13. Meehl, G. A., Teng, H. & Arblaster, J. M. Climate model simulations of the observed early-2000s hiatus of global warming. Nature Clim. Change 4, 898–902 (2014).

    Article  Google Scholar 

  14. Smith, T. M., Reynolds, R. W., Peterson, T .C. & Lawrimore, J. Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).

    Article  Google Scholar 

  15. Thompson, D. W. J., Kennedy, J. J., Wallace, J. M. & Jones, P. D. A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature 453, 646–649 (2008).

    Article  Google Scholar 

  16. Huang, B. et al. Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J. Clim. 28, 911–930 (2015).

    Article  Google Scholar 

  17. Brönnimann, S. Early twentieth-century warming. Nature Geosci. 2, 735–736 (2009).

    Article  Google Scholar 

  18. Bindoff, N. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 867–952 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  19. Wilcox, L. J., Highwood, E. J. & Dunstone, N. J. The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environ. Res. Lett. 8, 024033 (2013).

    Article  Google Scholar 

  20. Meehl, G. A., Hu, A. & Santer, B. D. The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. J. Clim. 22, 780–792 (2009).

    Article  Google Scholar 

  21. Thompson, D. M. et al. Early twentieth-century warming linked to tropical Pacific wind strength. Nature Geosci. 8, 117–121 (2015).

    Article  Google Scholar 

  22. Knutti, R. & Hegerl, G. C. The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nature Geosci. 1, 735–743 (2008).

    Article  Google Scholar 

  23. Otto, A. et al. Energy budget constraints on climate response. Nature Geosci. 6, 413–414 (2013).

    Article  Google Scholar 

  24. Thompson, D. W., Wallace, J. M., Jones, P. D. & Kennedy, J. J. Identifying signatures of natural climate variability in time series of global-mean surface temperature: methodology and insights. J. Clim. 22, 6120–6141 (2009).

    Article  Google Scholar 

  25. Fyfe, J. C., Gillett, N. P. & Thompson, D. W. J. Comparing variability and trends in observed and modelled global-mean surface temperature. Geophys. Res. Lett. 37, L16802 (2010).

    Article  Google Scholar 

  26. Victor, D. G. & Kennel, C. F. Ditch the 2 °C warming goal. Nature 514, 30–31 (2014).

    Article  Google Scholar 

  27. Boer, G. J. et al. The decadal climate prediction project. Geosci. Model Dev. Discuss. (2016).

  28. Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J. Geophys. Res. 117, D08101 (2012).

    Article  Google Scholar 

  29. Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

    Google Scholar 

  30. Karl, T. R. et al. Possible artifacts of data biases in the recent global surface warming hiatus. Science 348, 1469–1472 (2015).

    Article  Google Scholar 

  31. Hersbach, H. et al. ERA-20CM: A Twentieth Century Atmospheric Model Ensemble ERA Report Series 16 (ECMWF, 2013);

  32. Delworth, T. L. et al. GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J. Clim. 19, 643–674 (2006).

    Article  Google Scholar 

  33. Tokinaga, H., Xie, S.-P., Deser, C., Kosaka, Y. & Okumura, Y. M. Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature 491, 439–443 (2012).

    Article  Google Scholar 

  34. Maher, N., McGregor, S., England, M. H. & Sen Gupta, A. Effects of volcanism on tropical variability. Geophys. Res. Lett. 42, 6024–6033 (2015).

    Article  Google Scholar 

  35. Flato, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 741–866 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  36. Sen, P. K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

    Article  Google Scholar 

Download references


The authors are grateful to the Geophysical Fluid Dynamics Laboratory model developers for making the coupled model version 2.1 available. Y.K. is supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology through Grant-in-Aid for Young Scientists 15H05466 and the Arctic Challenge for Sustainability (ArCS) Project, and by the Japanese Ministry of Environment through the Environment Research and Technology Development Fund 2-1503. S.-P.X. is supported by the US National Science Foundation and National Oceanic and Atmospheric Administration.

Author information

Authors and Affiliations



Y.K. and S.-P.X. designed the study and wrote the paper. Y.K. performed the model experiments and analysis in consultation with S.-P.X.

Corresponding authors

Correspondence to Yu Kosaka or Shang-Ping Xie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 10437 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosaka, Y., Xie, SP. The tropical Pacific as a key pacemaker of the variable rates of global warming. Nature Geosci 9, 669–673 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing