Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An abyssal carbonate compensation depth overshoot in the aftermath of the Palaeocene–Eocene Thermal Maximum

Abstract

During the Palaeocene–Eocene Thermal Maximum (PETM) about 56 million years ago, thousands of petagrams of carbon were released into the atmosphere and ocean in just a few thousand years, followed by gradual sequestration over approximately 200,000 years. If silicate weathering is one of the key negative feedbacks that removed this carbon, a period of seawater calcium carbonate saturation greater than pre-event levels would be expected during the event's recovery phase. In marine sediments, this should be recorded as a temporary deepening of the depth below which no calcite is preserved — the calcite compensation depth (CCD). Previous and new sedimentary records from sites that were above the pre-PETM CCD show enhanced carbonate accumulation following the PETM. A new record from an abyssal site in the North Atlantic that lay below the pre-PETM CCD shows a period of carbonate preservation beginning about 70,000 years after the onset of the PETM, providing the first direct evidence for an over-deepening of the CCD. This record confirms an overshoot in ocean carbonate saturation during the PETM recovery. Simulations with two earth system models support scenarios for the PETM that involve a large initial carbon release followed by prolonged low-level emissions, consistent with the timing of CCD deepening in our record. Our findings indicate that sequestration of these carbon emissions was most likely the result of both globally enhanced calcite burial above the CCD and, at least in the North Atlantic, an over-deepening of the CCD.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Lithology and δ13C over the PETM.
Figure 2: Age models and PETM isotopic and sedimentological records from new and previous sites.
Figure 3: Comparison of LOSCAR and cGENIE carbon release experiments.

References

  1. 1

    Koch, P. L., Zachos, J. C. & Gingerich, P. D. Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. Nature 358, 319–322 (1992).

    Article  Google Scholar 

  2. 2

    Kennett, J. P. & Stott, L. D. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature 353, 225–229 (1991).

    Article  Google Scholar 

  3. 3

    McInerney, F. A. & Wing, S. The Paleocene–Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39, 489–516 (2011).

    Article  Google Scholar 

  4. 4

    Dunkley-Jones, T. et al. Climate model and proxy data constraints on ocean warming across the Paleocene–Eocene Thermal Maximum. Earth Sci. Rev. 125, 123–145 (2013).

    Article  Google Scholar 

  5. 5

    Penman, D. E., Hönisch, B., Zeebe, R. E., Thomas, E. & Zachos, J. C. Rapid and sustained surface ocean acidification during the Paleocene–Eocene Thermal Maximum. Paleoceanography 29, 357–369 (2014).

    Article  Google Scholar 

  6. 6

    Zachos, J. C. et al. Rapid acidification of the ocean during the Paleocene–Eocene Thermal Maximum. Science 308, 1611–1615 (2005).

    Article  Google Scholar 

  7. 7

    Dickens, G. R., Oneil, J. R., Rea, D. K. & Owen, R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995).

    Article  Google Scholar 

  8. 8

    Panchuk, K., Ridgwell, A. & Kump, L. R. Sedimentary response to Paleocene–Eocene Thermal Maximum carbon release: a model-data comparison. Geology 36, 315–318 (2008).

    Article  Google Scholar 

  9. 9

    Zeebe, R. E., Zachos, J. C. & Dickens, G. R. Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming. Nature Geosci. 2, 576–580 (2009).

    Article  Google Scholar 

  10. 10

    Zeebe, R. & Zachos, J. Long-term legacy of massive carbon input to the Earth system: Anthropocene versus Eocene. Phil. Trans. R. Soc. A 371, 1–22 (2012).

    Google Scholar 

  11. 11

    Dickens, G. R., Castillo, M. M. & Walker, J. C. G. A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25, 259–262 (1997).

    Article  Google Scholar 

  12. 12

    Farley, K. A. & Eltgroth, S. F. An alternative age model for the Paleocene–Eocene thermal maximum using extraterrestrial 3He. Earth Planet. Sci. Lett. 208, 135–148 (2003).

    Article  Google Scholar 

  13. 13

    Kelly, D. C., Zachos, J. C., Bralower, T. J. & Schellenberg, S. A. Enhanced terrestrial weathering/runoff and surface ocean carbonate production during the recovery stages of the Paleocene–Eocene thermal maximum. Paleoceanography 20, PA4023 (2005).

    Article  Google Scholar 

  14. 14

    Kelly, D. C., Nielsen, T. M. J., McCarren, H. K., Zachos, J. C. & Rohl, U. Spatiotemporal patterns of carbonate sedimentation in the South Atlantic: implications for carbon cycling during the Paleocene–Eocene thermal maximum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 293, 30–40 (2010).

    Article  Google Scholar 

  15. 15

    Röhl, U., Westerhold, T., Bralower, T. J. & Zachos, J. C. On the duration of the Paleocene–Eocene thermal maximum (PETM). Geochem. Geophys. Geosyst. 8, Q12002 (2007).

    Article  Google Scholar 

  16. 16

    Murphy, B. H., Farley, K. A. & Zachos, J. C. An extraterrestrial He-3-based timescale for the Paleocene–Eocene thermal maximum (PETM) from Walvis Ridge, IODP Site 1266. Geochim. Cosmochim. Acta 74, 5098–5108 (2010).

    Article  Google Scholar 

  17. 17

    Greene, S. et al. Rethinking controls on the long-term cenozoic carbonate compensation depth: case studies across Late Paleocene–Early Eocene warming and Late Eocene–Early Oligocene cooling. Abstr. PP41C-1407 (American Geophysical Union, Fall Meeting, 2014).

  18. 18

    Norris, R. D., Wilson, P. A., Blum, P. & the Expedition 342 Scientists. Proc. IODP Vol. 342 (IODP, 2012).

    Google Scholar 

  19. 19

    Zeebe, R. LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle reservoir model v2.0.4. Geosci. Model Dev. 5, 149–166 (2012).

    Article  Google Scholar 

  20. 20

    Ridgwell, A. & Hargreaves, J. Regulation of atmospheric CO2 by deep-sea sediments in an Earth system model. Glob. Biogeochem. Cycles 21, GB2008 (2007).

    Article  Google Scholar 

  21. 21

    Ridgwell, A. Interpreting transient carbonate compensation depth changes by marine sediment core modeling. Paleoceanography 22, PA4102 (2007).

    Article  Google Scholar 

  22. 22

    Nunes, F. & Norris, R. D. Abrupt reversal in ocean overturning during the Palaeocene/Eocene warm period. Nature 439, 60–63 (2006).

    Article  Google Scholar 

  23. 23

    McCarren, H., Thomas, E., Hasegawa, T., Röhl, U. & Zachos, J. C. Depth dependency of the Paleocene-Eocene carbon isotope excursion: paired benthic and terrestrial biomarker records (Ocean Drilling Program Leg 208, Walvis Ridge). Geochem. Geophys. Geosyst. 9, Q10008 (2008).

    Article  Google Scholar 

  24. 24

    Zeebe, R. E. & Zachos, J. C. Reversed deep-sea carbonate ion basin gradient during Paleocene–Eocene thermal maximum. Paleoceanography 22, PA3201 (2007).

    Article  Google Scholar 

  25. 25

    Zeebe, R. E. What caused the long duration of the Paleocene–Eocene Thermal Maximum? Paleoceanography 26, 1–13 (2013).

    Google Scholar 

  26. 26

    Bowen, G. J. Up in smoke: A role for organic carbon feedbacks in Paleogene hyperthermals. Glob. Planet. Change 109, 18–29 (2013).

    Article  Google Scholar 

  27. 27

    Komar, N., Zeebe, R. & Dickens, G. Understanding long-term carbon cycle trends: the late Paleocene through the early Eocene. Paleoceanography 28, 650–662 (2013).

    Article  Google Scholar 

  28. 28

    Leon-Rodriguez, L. & Dickens, G. R. Constraints on ocean acidification associated with rapid and massive carbon injections: the early Paleogene record at ocean drilling program site 1215, equatorial Pacific Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 298, 409–420 (2010).

    Article  Google Scholar 

  29. 29

    Hancock, H. J., Dickens, G. R., Thomas, E. & Blake, K. L. Reappraisal of early Paleogene CCD curves: foraminiferal assemblages and stable carbon isotopes across the carbonate facies of Perth Abyssal Plain. Int. J. Earth Sci. 96, 925–946 (2007).

    Article  Google Scholar 

  30. 30

    Slotnick, B. S. et al. Early Paleogene variations in the calcite compensation depth: new constraints using old borehole sediments from across Ninetyeast Ridge, central Indian Ocean. Clim. Past 11, 473–493 (2015).

    Article  Google Scholar 

  31. 31

    Bowen, G. J. & Zachos, J. C. Rapid carbon sequestration at the termination of the Palaeocene–Eocene Thermal Maximum. Nature Geosci. 3, 866–869 (2010).

    Article  Google Scholar 

  32. 32

    Bains, S., Norris, R. D., Corfield, R. M. & Faul, K. L. Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature 407, 171–174 (2000).

    Article  Google Scholar 

  33. 33

    Ma, Z. et al. Carbon sequestration during the Palaeocene–Eocene Thermal Maximum by an efficient biological pump. Nature Geosci. 7, 382–388 (2014).

    Article  Google Scholar 

  34. 34

    Stoll, H. M. & Bains, S. Coccolith Sr/Ca records of productivity during the Paleocene–Eocene thermal maximum from the Weddell Sea. Paleoceanography 18, 1049 (2003).

    Article  Google Scholar 

  35. 35

    Uchikawa, J. & Zeebe, R. E. Influence of terrestrial weathering on ocean acidification and the next glacial inception. Geophys. Res. Lett. 35, L23608 (2008).

    Article  Google Scholar 

  36. 36

    Ridgwell, A. Application of sediment core modelling to interpreting the glacial–interglacial record of Southern Ocean silica cycling. Clim. Past 3, 387–396 (2007).

    Article  Google Scholar 

  37. 37

    Ridgwell, A. & Schmidt, D. N. Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nature Geosci. 3, 196–200 (2010).

    Article  Google Scholar 

  38. 38

    Colbourn, G., Ridgwell, A. & Lenton, T. The Rock Geochemical Model (RokGeM) v0. 9. Geosci. Model Dev. 6, 1543–1573 (2013).

    Article  Google Scholar 

  39. 39

    Walker, J. C. G. & Kasting, J. F. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 151–189 (1992).

    Article  Google Scholar 

  40. 40

    Hönisch, B. et al. The geological record of ocean acidification. Science 335, 1058–1063 (2012).

    Article  Google Scholar 

  41. 41

    Sluijs, A., Zachos, J. C. & Zeebe, R. E. Constraints on hyperthermals. Nature Geosci. 5, 231–231 (2012).

    Article  Google Scholar 

  42. 42

    Walker, J. C. G., Hays, P. B. & Kasting, J. F. A Negative feedback mechanism for the long-term stabilization of Earths surface-temperature. J. Geophys. Res. 86, 9776–9782 (1981).

    Article  Google Scholar 

  43. 43

    Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate-silicate geochemical cycle and its effects on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983).

    Article  Google Scholar 

  44. 44

    Dickson, A. J. et al. Evidence for weathering and volcanism during the PETM from Arctic Ocean and Peri-Tethys osmium isotope records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 438, 300–307 (2015).

    Article  Google Scholar 

  45. 45

    Ravizza, G., Norris, R. N., Blusztajn, J. & Aubry, M. P. An osmium isotope excursion associated with the Late Paleocene thermal maximum: evidence of intensified chemical weathering. Paleoceanography 16, 155–163 (2001).

    Article  Google Scholar 

  46. 46

    Robert, C. & Kennett, J. P. Antarctic subtropical humid episode at the Paleocene–Eocene Boundary: clay-mineral evidence. Geology 22, 211–214 (1994).

    Article  Google Scholar 

  47. 47

    Goodwin, P. & Ridgwell, A. Ocean-atmosphere partitioning of anthropogenic carbon dioxide on multimillennial timescales. Glob. Biogeochem. Cycles 24, GB2014 (2010).

    Article  Google Scholar 

  48. 48

    Lord, N., Ridgwell, A., Thorne, M. & Lunt, D. An impulse response function for the “long tail” of excess atmospheric CO2 in an Earth system model. Glob. Biogeochem. Cycles 30, 2–17 (2015).

    Article  Google Scholar 

  49. 49

    Palike, H. et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488, 609–614 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the scientists and crew of IODP Expedition 342 and the IODP Bremen Core Repository. We thank M. Gilmour and S. Nicoara for assistance in the stable isotope laboratory at The Open University, V. Lukies for assistance in the XRF Core Scanning laboratory at MARUM, University of Bremen, and D. Andreasen for assistance with carbonate stable isotope analyses at the University of California, Santa Cruz. This work was supported by U.S. National Science Foundation Division of Ocean Sciences grant 1220615 to J.C.Z. and R.E.Z. and the Deutsche Forschungsgemeinschaft (DFG) (U.R. and T.W.).

Author information

Affiliations

Authors

Contributions

D.E.P., S.K.T., P.F.S., R.D.N. and S.B. conceived the study and participated in IODP Expedition 342, which recovered and described the new sedimentary records. D.E.P. generated carbonate stable isotope analyses in the lab of J.C.Z. and A.J.D. generated organic carbon stable isotope and Coulormat wt% CaCO3 analyses. XRF scanning records were generated by S.K.T. at Scripps and A.C., P.F.S., T.W. and U.R. at MARUM. D.E.P. and S.K.T. performed the carbon cycle modelling with guidance from R.E.Z. and A.R. D.E.P. wrote the manuscript with help from S.K.T. and P.F.S. All authors edited the manuscript.

Corresponding author

Correspondence to Donald E. Penman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6984 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Penman, D., Turner, S., Sexton, P. et al. An abyssal carbonate compensation depth overshoot in the aftermath of the Palaeocene–Eocene Thermal Maximum. Nature Geosci 9, 575–580 (2016). https://doi.org/10.1038/ngeo2757

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing