Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

North Atlantic summer storm tracks over Europe dominated by internal variability over the past millennium

Abstract

Certain large, sustained anomalies in European temperatures in the past millennium are probably the result of internal variation. Such internal variations can modulate regional temperatures away from the expected response to greenhouse gas forcing. Here we assess the causes of European summer temperature variability over the past millennium using temperature observations, simulations and reconstructions. We find multidecadal-mean summer temperatures have varied within a span of 1 K, largely controlled by external forcing. By contrast, we find subcontinental variations, described by the temperature contrast between northern and southern Europe (the meridional temperature gradient), vary with a span of 2 K, and are controlled by internal processes. These variations are the result of redistributions of precipitation and cloud cover linked to oscillations in the position of the summer storm track. In contrast to recent twentieth-century winter-time trends, variations of the summer storm track over the past millennium show a weak response to external forcing, and instead are dominated by stochastic internal variability. We argue that the response of European summer temperatures to anthropogenic greenhouse forcing is likely to be spatially modulated by the same stochastic internal processes that have caused periods of cool, wet summers in northern Europe over the last millennium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatiotemporal structure of simulated (MPI-ESM-P, AD 850–2005) and proxy mean continental and meridional temperature gradients (meridional gradient of European JJA near-surface temperature).
Figure 2: Spatiotemporal structure of the European summer (JJA) near-surface temperature meridional gradient from observational data.
Figure 3: Climate patterns linked to simulated summer (JJA) MTG (MPI-ESM-P, AD 850-2005).

Similar content being viewed by others

References

  1. Zorita, E. et al. European temperature records of the past five centuries based on documentary/instrumental information compared to climate simulations. Climatic Change 101, 143–168 (2010).

    Article  Google Scholar 

  2. Adams, J. B., Mann, M. E. & Ammann, C. M. Proxy evidence for an El Nino-like response to volcanic forcing. Nature 426, 274–278 (2003).

    Article  Google Scholar 

  3. Deser, C. et al. Communication of the role of natural variability in future North American climate. Nature Clim. Change 2, 775–779 (2012).

    Article  Google Scholar 

  4. Stott, P. A. et al. Detection and attribution of climate change: a regional perspective. WIREs: Clim. Change 1, 192–211 (2010).

    Google Scholar 

  5. Solomon, A. et al. Distinguishing the roles of natural and anthropogenically forced decadal climate variability. Bull. Am. Meteorol. Soc. 92, 141–156 (2011).

    Article  Google Scholar 

  6. PAGES 2k ConsortiumContinental-scale temperature variability during the past two millennia. Nature Geosci. 6, 339–346 (2013).

  7. Zhang, X., Walsh, J. E., Zhang, J., Bhatt, U. S. & Ikeda, M. Climatology and interannual variability of Arctic cyclone activity: 1948–2002. J. Clim. 17, 2300–2317 (2004).

    Article  Google Scholar 

  8. Dong, B., Sutton, R. T., Woollings, T. & Hodges, K. Variability of the North Atlantic summer storm track: mechanisms and impacts on European climate. Environ. Res. Lett. 8, 034037 (2013).

    Article  Google Scholar 

  9. Trachsel, M. et al. Multi-archive summer temperature reconstruction for the European Alps, AD 1053–1996. Quat. Sci. Rev. 46, 66–79 (2012).

    Article  Google Scholar 

  10. Büntgen, U., Frank, D., Wilson, R., Carrer, M. & Urbinati, C. Testing for tree-ring divergence in the European Alps. Glob. Change Biol. 14, 2443–2453 (2008).

    Article  Google Scholar 

  11. Büntgen, U. et al. Long-term summer temperature variations in the Pyrenees. Clim. Dynam. 31, 615–631 (2008).

    Article  Google Scholar 

  12. McCarroll, D. et al. A 1200-year multiproxy record of tree growth and summer temperature at the northern pine forest limit of Europe. Holocene 23, 471–484 (2013).

    Article  Google Scholar 

  13. Schmidt, G. A. et al. Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci. Model Dev. 4, 33–45 (2011).

    Article  Google Scholar 

  14. Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303, 1499–1503 (2004).

    Article  Google Scholar 

  15. Mann, M. E. et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl Acad. Sci. USA 105, 13252–13257 (2008).

    Article  Google Scholar 

  16. Crowley, T. J. Causes of climate change over the past 1000 years. Science 289, 270–277 (2000).

    Article  Google Scholar 

  17. Schmidt, G. A. et al. Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci. Model Dev. 4, 33–45 (2011).

    Article  Google Scholar 

  18. Chang, E. K. Are band-pass variance statistics useful measures of storm track activity? Re-examining storm track variability associated with the NAO using multiple storm track measures. Clim. Dynam. 33, 277–296 (2009).

    Article  Google Scholar 

  19. Bender, F. A., Ramanathan, V. & Tselioudis, G. Changes in extratropical storm track cloudiness 1983–2008: observational support for a poleward shift. Clim. Dynam. 38, 2037–2053 (2012).

    Article  Google Scholar 

  20. Stott, P. A., Stone, D. A. & Allen, M. R. Human contribution to the European heatwave of 2003. Nature 432, 610–614 (2004).

    Article  Google Scholar 

  21. Hegerl, G. et al. Influence of human and natural forcing on European seasonal temperatures. Nature Geosci. 4, 99–103 (2011).

    Article  Google Scholar 

  22. Briffa, K. R. et al. Reduced sensitivity of recent tree growth to temperature at high northern latitudes. Nature 391, 678–682 (1998).

    Article  Google Scholar 

  23. McCabe, G. J., Clark, M. P. & Serreze, M. C. Trends in Northern Hemisphere surface cyclone frequency and intensity. J. Climatol. 14, 2763–2768 (2001).

    Article  Google Scholar 

  24. Zahn, M. & von Storch, H. Tracking polar lows in CLM. Meteorol. Z. 17, 445–453 (2008).

    Article  Google Scholar 

  25. Chang, E. K. M., Zheng, C., Lanigan, P. & Yau, A. M. W. Significant modulation of variability and projected change in California winter precipitation by extratropical cyclone activity. Geophys. Res. Lett. 42, 5983–5991 (2015).

    Article  Google Scholar 

  26. Latif, M. et al. Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J. Clim. 17, 1605–1614 (2004).

    Article  Google Scholar 

  27. Folland, C. K. et al. The summer North Atlantic Oscillation: past, present, and future. J. Clim. 22, 1082–1103 (2009).

    Article  Google Scholar 

  28. Gómez-Navarro, J. J. & Zorita, E. Atmospheric annular modes in simulations over the past millennium: no long-term response to external forcing. Geophys. Res. Lett. 40, 3232–3236 (2013).

    Article  Google Scholar 

  29. Zappa, G., Masato, G., Shaffrey, L., Woollings, T. & Hodges, K. Linking Northern Hemisphere blocking and storm-track biases in the CMIP5 climate models. Geophys. Res. Lett. 41, 135–139 (2014).

    Article  Google Scholar 

  30. Hulme, M., Osborn, T. J. & Johns, T. C. Precipitation sensitivity to global warming: comparison of observations with HadCM2 simulations. Geophys. Res. Lett. 25, 3379–3382 (1998).

    Article  Google Scholar 

  31. McCarroll, D. et al. Blue reflectance provides a surrogate for latewood density of high-latitude pine tree rings. Arct. Antarct. Alp. Res. 34, 450–453 (2002).

    Article  Google Scholar 

  32. Böhm, R. et al. The early instrumental warm-bias: a solution for long central European temperature series 1760–2007. Climatic Change 101, 41–67 (2010).

    Article  Google Scholar 

  33. Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 5, 572–597 (2013).

    Article  Google Scholar 

  34. Gent, P. R. et al. The community climate system model version 4. J. Clim. 24, 4973–4991 (2011).

    Article  Google Scholar 

  35. Ebisuzaki, W. A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Clim. 10, 2147–2153 (1997).

    Article  Google Scholar 

  36. Zahn, M. & von Storch, H. Decreased frequency of North Atlantic polar lows associated with future climate warming. Nature 467, 309–312 (2010).

    Article  Google Scholar 

  37. Cavicchia, L., von Storch, H. & Gualdi, S. A long-term climatology of medicanes. Clim. Dynam. 43, http://dx.doi.org/10.1007/s00382-013-1893-7 (2013).

  38. Crowley, T. J. & Unterman, M. B. Technical details concerning development of a 1200 yr proxy index for global volcanism. Earth Syst. Sci. Data 5, 187–197 (2013).

    Article  Google Scholar 

  39. Gao, C., Robock, A. & Ammann, C. Volcanic forcing of climate over the past 1500 years: an improved ice core-based index for climate models. J. Geophys. Res. 113, D23111 (2008).

    Article  Google Scholar 

  40. Hansen, J. et al. Climate forcings in Goddard Institute for Space Studies SI2000 simulations. J. Geophys. Res. 107, 4347 (2002).

    Article  Google Scholar 

  41. Vieira, L. E. A., Solanki, S. K., Krivova, N. A. & Usoskin, I. Evolution of the solar irradiance during the Holocene. Astron. Astrophys. 531, http://dx.doi.org/10.1051/0004-6361/201015843 (2011).

Download references

Acknowledgements

M.H.G., D.M., G.H.F.Y. and I.R. were supported by European Union FP6 project Millennium 017008 and the Climate Change Consortium of Wales C3W. The work of E.Z. and M.Z. is part of the German Cluster of Excellence CLISAP. M.H.G., D.M. and E.Z. were supported by the PAGES initiative (EuroMed2k), which in turn received support from the US and Swiss National Science Foundations, US National Oceanographic and Atmospheric Administration and the International Geosphere-Biosphere Programme. T. D. James is thanked for support with figures.

Author information

Authors and Affiliations

Authors

Contributions

M.H.G.: project planning and design, data analysis, manuscript preparation. E.Z.: data analysis and manuscript preparation. D.M.: project planning and design, data analysis, manuscript preparation. M.Z.: data analysis, manuscript preparation. G.H.F.Y.: project planning, data analysis, manuscript preparation. I.R.: project planning, data analysis, manuscript preparation.

Corresponding author

Correspondence to Mary H. Gagen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1089 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagen, M., Zorita, E., McCarroll, D. et al. North Atlantic summer storm tracks over Europe dominated by internal variability over the past millennium. Nature Geosci 9, 630–635 (2016). https://doi.org/10.1038/ngeo2752

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2752

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing