Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning

Abstract

Ocean overturning circulation requires a continuous thermodynamic transformation of the buoyancy of seawater. The steeply sloping isopycnals of the Southern Ocean provide a pathway for Circumpolar Deep Water to upwell from mid depth without strong diapycnal mixing1,2,3, where it is transformed directly by surface fluxes of heat and freshwater and splits into an upper and lower branch4,5,6. While brine rejection from sea ice is thought to contribute to the lower branch7, the role of sea ice in the upper branch is less well understood, partly due to a paucity of observations of sea-ice thickness and transport8,9. Here we quantify the sea-ice freshwater flux using the Southern Ocean State Estimate, a state-of-the-art data assimilation that incorporates millions of ocean and ice observations. We then use the water-mass transformation framework10 to compare the relative roles of atmospheric, sea-ice, and glacial freshwater fluxes, heat fluxes, and upper-ocean mixing in transforming buoyancy within the upper branch. We find that sea ice is a dominant term, with differential brine rejection and ice melt transforming upwelled Circumpolar Deep Water at a rate of 22 × 106 m3 s−1. These results imply a prominent role for Antarctic sea ice in the upper branch and suggest that residual overturning and wind-driven sea-ice transport are tightly coupled.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surface freshwater exchange in the SOSE.
Figure 2: Components of water-mass transformation and formation in SOSE in neutral density (γn) coordinates.
Figure 3: Time series of freshwater transformation over the six-year state estimate, as a function of time (x axis) and neutral density γn (y axis).

Similar content being viewed by others

References

  1. Toggweiler, R. & Samuels, B. Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res. I 42, 477–500 (1995).

    Article  Google Scholar 

  2. Wolfe, C. & Cessi, P. The adiabatic pole-to-pole overturning circulation. J. Phys. Oceanogr. 41, 1795–1810 (2011).

    Article  Google Scholar 

  3. Nikurashin, M. & Vallis, G. A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr. 42, 1652–1667 (2012).

    Article  Google Scholar 

  4. Speer, K., Rintoul, S. & Sloyan, B. The diabatic Deacon cell. J. Phys. Oceanogr. 30, 3212–3223 (2000).

    Article  Google Scholar 

  5. Marshall, J. & Speer, K. Closing the meridional overturning circulation through Southern Ocean upwelling. Nature Geosci. 5, 171–180 (2012).

    Article  Google Scholar 

  6. Talley, L. D. Closure of the global overturning circulation through the Indian, Pacific and Southern Oceans: schematics and transports. Oceanography 26, 80–97 (2013).

    Article  Google Scholar 

  7. Jacobs, S. Bottom water production and its links with the thermohaline circulation. Antarct. Sci. 4, 427–437 (2004).

    Article  Google Scholar 

  8. Ren, L., Speer, K. & Chassignet, E. P. The mixed layer salinity budget and sea ice in the Southern Ocean. J. Geophys. Res. 116, C08031 (2011).

    Google Scholar 

  9. Tamura, T., Ohshima, K. I., Nihashi, S. & Hasumi, H. Estimation of surface heat/salt fluxes associated with sea ice growth/melt in the Southern Ocean. Sci. Online Lett. Atmos. 7, 17–20 (2011).

    Google Scholar 

  10. Walin, G. On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus 34, 187–195 (1982).

    Article  Google Scholar 

  11. Talley, L. D. Freshwater transport estimates and the global overturning circulation: shallow, deep and throughflow components. Prog. Oceanogr. 78, 257–303 (2008).

    Article  Google Scholar 

  12. Holland, P. R. & Kwok, R. Wind-driven trends in Antarctic sea-ice drift. Nature Geosci. 5, 872–875 (2012).

    Article  Google Scholar 

  13. Hasumi, H. & Suginohara, N. Haline circulation induced by formation and melting of sea ice. J. Geophys. Res. 100, 20613–20625 (1995).

    Article  Google Scholar 

  14. Stoessel, A., Kim, S. & Drijfhout, S. B. The impact of Southern Ocean sea ice in a global ocean model. J. Phys. Oceanogr. 28, 1999–2018 (1998).

    Article  Google Scholar 

  15. Komuro, Y. & Hasumi, H. Effects of surface freshwater flux induced by sea ice transport on the global thermohaline circulation. J. Geophys. Res. 108, 3047 (2003).

    Article  Google Scholar 

  16. Saenko, O. A., Schmittner, A. & Weaver, A. J. On the role of wind-driven sea ice motion on ocean ventilation. J. Phys. Oceanogr. 32, 3376–3395 (2002).

    Article  Google Scholar 

  17. Iudicone, D., Madec, G., Blanke, B. & Speich, S. The role of Southern Ocean surface forcings and mixing in the global conveyor. J. Phys. Oceanogr. 38, 1377–1400 (2008).

    Article  Google Scholar 

  18. Marshall, J., Jamous, D. & Nilsson, J. Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates. Deep-Sea Res. I 46, 545–572 (1999).

    Article  Google Scholar 

  19. Urakawa, L. & Hasumi, H. Eddy-resolving model estimate of the cabbeling effect on the water mass transformation in the Southern Ocean. J. Phys. Oceanogr. 42, 1288–1302 (2012).

    Article  Google Scholar 

  20. Downes, S. M., Gnanadesikan, A., Griffies, S. M. & Sarmiento, J. L. Water mass exchange in the Southern Ocean in coupled climate models. J. Phys. Oceanogr. 41, 1756–1771 (2011).

    Article  Google Scholar 

  21. Garrett, C. & Tandon, A. The effects on water mass formation of surface mixed layer time-dependence and entrainment fluxes. Deep-Sea Res. I 44, 1991–2006 (1997).

    Article  Google Scholar 

  22. Gordon, A. L. & Huber, B. A. Southern Ocean winter mixed layer. J. Geophys. Res. 95, 11544–11672 (1990).

    Google Scholar 

  23. Martinson, D. Evolution of the Southern Ocean winter mixed layer and sea ice: open ocean deepwater formation and ventilation. J. Geophys. Res. 95, 11641–11654 (1990).

    Article  Google Scholar 

  24. Cerovečki, I., Talley, L. D. & Mazloff, M. Subantarctic mode water formation, destruction, and export in the eddy-permitting Southern Ocean State Estimate. J. Phys. Oceanogr. 42, 1485–1511 (2012).

    Google Scholar 

  25. Cerovečki, I. & Mazloff, M. R. The spatiotemporal structure of diabatic processes governing the evolution of Subantarctic Mode Water in the Southern Ocean. J. Phys. Oceanogr. 46, 683–710 (2016).

    Article  Google Scholar 

  26. Wong, A. P. S. & Riser, S. C. Profiling float observations of the upper ocean under sea ice off the Wilkes Land coast of Antarctica. J. Phys. Oceanogr. 41, 1102–1115 (2011).

    Article  Google Scholar 

  27. Cavalieri, D., Parkinson, C. & Vinnikov, K. Y. 30-year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability. Geophys. Res. Lett. 30, 1970 (2003).

    Article  Google Scholar 

  28. Stephens, B. B. & Keeling, R. F. The influence of Antarctic sea ice on glacial–interglacial CO2 variations. Nature 404, 171–174 (2000).

    Article  Google Scholar 

  29. Ferrari, R. et al. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753–8758 (2014).

    Article  Google Scholar 

  30. Wunsch, C. Determining the general circulation of the oceans: a preliminary discussion. Science 196, 871–875 (1977).

    Article  Google Scholar 

  31. Wunsch, C. & Heimbach, P. in Ocean Circulation and Climate: A 21st Century Perspective Vol. 103 (eds Siedler, G., Gould, J. & Griffies, S. M.) Ch. 21, 553–579 (International Geophysics, Academic, 2013); http://www.sciencedirect.com/science/article/pii/B9780123918512000210

    Book  Google Scholar 

  32. Forget, G. et al. ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev. Discuss. 8, 3653–3743 (2015); http://www.geosci-model-dev-discuss.net/8/3653/2015

    Article  Google Scholar 

  33. Mazloff, M., Heimbach, P. & Wunsch, C. An eddy permitting Southern Ocean state estimate. J. Phys. Oceanogr. 40, 880–899 (2010).

    Article  Google Scholar 

  34. Mazloff, M., Ferrari, R. & Schneider, T. The force balance of the Southern Ocean meridional overturning circulation. J. Phys. Oceanogr. 43, 1193–1208 (2013).

    Article  Google Scholar 

  35. Sebille, E. et al. Abyssal connections of Antarctic Bottom Water in a Southern Ocean state estimate. Geophys. Res. Lett. 40, 2177–2182 (2013).

    Article  Google Scholar 

  36. Cerovečki, I., Talley, L. D. & Mazloff, M. R. A comparison of Southern Ocean air-sea buoyancy flux from an ocean state estimate with five other products. J. Clim. 24, 6283–6306 (2011).

    Article  Google Scholar 

  37. Abernathey, R., Marshall, J., Shuckburgh, E. & Mazloff, M. Enhancement of mesoscale eddy stirring at steering levels in the Southern Ocean. J. Phys. Oceanogr. 40, 170–185 (2010).

    Article  Google Scholar 

  38. Ito, T., Woloszyn, M. & Mazloff, M. Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow. Nature 463, 80–83 (2010).

    Article  Google Scholar 

  39. Marshall, J., Adcroft, A., Hill, C., Perelman, L. & Heisey, C. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. 102, 5753–5766 (1997).

    Article  Google Scholar 

  40. Marshall, J., Hill, C., Perelman, L. & Adcroft, A. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res. 102, 5733–5752 (1997).

    Article  Google Scholar 

  41. Large, W. G., McWilliams, J. C. & Doney, S. C. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32, 363–403 (1994).

    Article  Google Scholar 

  42. Losch, M., Menemenlis, D., Campin, J., Heimbach, P. & Hill, C. On the formulation of sea-ice models. Part 1: effects of different solver implementations and parameterizations. Ocean Modelling 33, 129–144 (2010).

    Article  Google Scholar 

  43. Forget, G. Mapping ocean observations in a dynamical framework: a 2004–06 ocean atlas. J. Phys. Oceanogr. 40, 1201–1221 (2010).

    Article  Google Scholar 

  44. Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996).

    Article  Google Scholar 

  45. Dee, D. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  46. Large, W. G. & Yeager, S. G. The global climatology of an interannually varying air–sea flux data set. Clim. Dynam. 33, 341–364 (2009).

    Article  Google Scholar 

  47. Fekete, B. M., Vöröosmarty, C. J. & Grabs, W. High-resolution fields of global runoff combining observed river discharge and simulated water balances. Glob. Biogeochem. Cycles 16, 15-1–15-10 (2002).

    Article  Google Scholar 

  48. Comiso, J. Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS version 2 (Technical Report, NASA DAAC at the National Snow and Ice Data Center, 2000).

  49. Cavalieri, D., Parkinson, C., Gloersen, P. & Zwally, H. J. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data version 1 (Technical Report, NASA DAAC at the National Snow and Ice Data Center, 1996).

  50. Markus, T. & Cavalieri, D. J. An enhancement of the NASA team sea ice algorithm. IEEE Trans. Geosci. Remote Sens. 38, 1387–1398 (2000).

    Article  Google Scholar 

  51. Fenty, I. G. & Heimbach, P. Coupled sea ice-ocean state estimation in the Labrador Sea and Baffin Bay. J. Phys. Oceanogr. 43, 884–904 (2013).

    Article  Google Scholar 

  52. Heuzé, C., Heywood, K. J., Stevens, D. P. & Ridley, J. K. Southern Ocean bottom water characteristics in CMIP5 models. Geophys. Res. Lett. 40, 1409–1414 (2013).

    Article  Google Scholar 

  53. Toggweiler, J. R. & Samuels, B. Effect of sea ice on the salinity of Antarctic bottom waters. J. Phys. Oceanogr. 25, 1980–1997 (1995).

    Article  Google Scholar 

  54. Stewart, A. L. & Thompson, A. F. Connecting Antarctic cross-slope exchange with Southern Ocean overturning. J. Phys. Oceanogr. 43, 1453–1471 (2013).

    Article  Google Scholar 

  55. Heywood, K. J. et al. Ocean processes at the Antarctic continental slope. Phil. Trans. R. Soc. A 372, 20130047 (2014).

    Article  Google Scholar 

  56. Holland, P. R. et al. Modeled trends in Antarctic sea ice thickness. J. Clim. 27, 3784–3801 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

R.P.A. acknowledges support from NSF grant OCE-1357133. I.C., L.D.T. and M.M. acknowledge support from NSF grant OCE-1357072. L.D.T. and M.M. acknowledge additional support from NSF grant PLR-1425989, and M.M. from OCE-1234473. I.C. acknowledges additional support from the New International Fellowship Mobility Programme for Experienced Researchers—NEWFELPRO under the European Union’s Seventh Framework Programme for research, technological development and demonstration (FP7-PEOPLE-2011-COFUND-MCA). We acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR’s Computational and Information Systems Laboratory, sponsored by the National Science Foundation, and from the Yeti HPC cluster, provided by Columbia University Research Computing Services. SOSE was produced with support from NSF-XSEDE grant OCE130007.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the interpretation of the results and writing of the manuscript. R.P.A. designed the study, implemented the water-mass calculations, and conducted the validation against ship-based and sea-ice observations. I.C. contributed to the water-mass analysis and validation of SOSE against ARGO observations. P.R.H. contributed to the analysis of sea-ice thermodynamics. E.N. contributed to the water-mass analysis. M.M. developed SOSE and contributed to model validation. L.D.T. contributed to interpretation of the transformation rates.

Corresponding author

Correspondence to Ryan P. Abernathey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 16230 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abernathey, R., Cerovecki, I., Holland, P. et al. Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nature Geosci 9, 596–601 (2016). https://doi.org/10.1038/ngeo2749

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2749

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing