Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Segmentation of mid-ocean ridges attributed to oblique mantle divergence

Abstract

The origin of mid-ocean ridge segmentation—the systematic along-axis variation in tectonic and magmatic processes—remains controversial. It is commonly assumed that mantle flow is a passive response to plate divergence and that between transform faults magma supply controls segmentation. Using seismic tomography, we constrain the geometry of mantle flow and the distribution of mantle melt beneath the intermediate-spreading Endeavour segment of the Juan de Fuca Ridge. Our results, in combination with prior studies, establish a systematic skew between the mantle-divergence and plate-spreading directions. In all three cases studied, mantle divergence is advanced with respect to recent changes in the plate-spreading direction and the extent to which the flow field is advanced increases with decreasing spreading rate. Furthermore, seismic images show that large-offset, non-transform discontinuities are regions of enhanced mantle melt retention. We propose that oblique mantle flow beneath mid-ocean ridges is a driving force for the reorientation of spreading segments and the formation of ridge-axis discontinuities. The resulting tectonic discontinuities decrease the efficiency of upward melt transport, thus defining segment-scale variations in magmatic processes. We predict that across spreading rates mid-ocean ridge segmentation is controlled by evolving patterns in asthenospheric flow and the dynamics of lithospheric rifting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tectonic segmentation of fast-, intermediate- and slow-spreading ridges.
Figure 2: Location and geometry of the ETOMO experiment and tomographic image of the mantle velocity structure.
Figure 3: Mean Pn delay times versus azimuth.
Figure 4: Skew of mantle anisotropy by spreading rate.
Figure 5: Proposed model of magmatic segmentation for fast- and intermediate-spreading ridges.

Similar content being viewed by others

References

  1. Schouten, H., Klitgord, K. D. & Whitehead, J. A. Segmentation of mid-ocean ridges. Nature 317, 225–229 (1985).

    Article  Google Scholar 

  2. Macdonald, K. C. et al. A new view of the mid-ocean ridge from the behaviour of ridge-axis discontinuities. Nature 335, 217–225 (1988).

    Article  Google Scholar 

  3. Sempéré, J. C., Purdy, G. M. & Schouten, H. Segmentation of the Mid-Atlantic Ridge between 24° N and 30° 40′ N. Nature 344, 427–431 (1990).

    Article  Google Scholar 

  4. Langmuir, C. H., Bender, J. F. & Batiza, R. Petrological and tectonic segmentation of the East Pacific Rise, 5° 30′–14° 30′ N. Nature 322, 422–429 (1986).

    Article  Google Scholar 

  5. Kent, G. M. et al. Evidence from three-dimensional seismic reflectivity images for enhanced melt supply beneath mid-ocean-ridge discontinuities. Nature 406, 614–618 (2000).

    Article  Google Scholar 

  6. Carbotte, S. M., Smith, D. K., Cannat, M. & Klein, E. M. in Magmatic Rifting and Active Volcanism Vol. 420 (eds Wright, T. J., Ayele, A., Ferguson, D. J., Kidane, T. & Vye-Brown, C.) (The Geological Society of London, 2015).

    Google Scholar 

  7. Lonsdale, P. Segmentation of the Pacific-Nazca Spreading Center, 1° N–20° S. J. Geophys. Res. 94, 12197–12225 (1989).

    Article  Google Scholar 

  8. Carbotte, S. M., Small, C. & Donnelly, K. The influence of ridge migration on the magmatic segmentation of mid-ocean ridges. Nature 429, 743–746 (2004).

    Article  Google Scholar 

  9. Toomey, D. R., Jousselin, D., Dunn, R. A., Wilcock, W. S. D. & Detrick, R. S. Skew of mantle upwelling beneath the East Pacific Rise governs segmentation. Nature 446, 409–414 (2007).

    Article  Google Scholar 

  10. Bell, R. E. & Buck, W. R. Crustal control of ridge segmentation inferred from observations of the Reykjanes Ridge. Nature 357, 583–586 (1992).

    Article  Google Scholar 

  11. Weekly, R. T., Wilcock, W. S. D., Toomey, D. R., Hooft, E. E. E. & Kim, E. Upper crustal seismic structure of the Endeavour segment, Juan de Fuca Ridge from traveltime tomography: implications for oceanic crustal accretion. Geochem. Geophys. Geosyst. 15, 1296–1315 (2014).

    Article  Google Scholar 

  12. Soule, D. C., Wilcock, W. S. D., Toomey, D. R., Hooft, E. E. E. & Weekly, R. T. Near-axis crustal structure and thickness of the Endeavour segment, Juan de Fuca Ridge. Geophys. Res. Lett. http://dx.doi.org/10.1002/2016GL068182 (2016).

  13. Gripp, A. E. & Gordon, R. G. Young tracks of hotspots and current plate velocities. Geophys. J. Int. 150, 321–361 (2002).

    Article  Google Scholar 

  14. Carbotte, S. M. et al. Rift topography linked to magmatism at the intermediate spreading Juan de Fuca Ridge. Geology 34, 209–212 (2006).

    Article  Google Scholar 

  15. Ismaïl, W. B. & Mainprice, D. An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy. Tectonophysics 296, 145–157 (1998).

    Article  Google Scholar 

  16. Zhang, S. & Karato, S. Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature 375, 774–777 (1995).

    Article  Google Scholar 

  17. Blackman, D. K. & Kendall, J. M. Seismic anisotropy in the upper mantle 2. Predictions for current plate boundary flow models. Geochem. Geophys. Geosyst. 3, 8602 (2002).

    Google Scholar 

  18. Dunn, R. A., Toomey, D. R. & Solomon, S. C. Three-dimensional seismic structure and physical properties of the crust and shallow mantle beneath the East Pacific Rise at 9° 30′ N. J. Geophys. Res. 105, 23537–23555 (2000).

    Article  Google Scholar 

  19. Carbotte, S. M. et al. Variable crustal structure along the Juan de Fuca Ridge: influence of on-axis hot spots and absolute plate motions. Geochem. Geophys. Geosyst. 9, Q08001 (2008).

    Article  Google Scholar 

  20. Sparks, D. W. & Parmentier, E. M. Melt extraction from the mantle beneath spreading centers. Earth Planet. Sci. Lett. 105, 368–377 (1991).

    Article  Google Scholar 

  21. Dunn, R. A., Lekić, V., Detrick, R. S. & Toomcy, D. R. Three-dimensional seismic structure of the Mid-Atlantic Ridge (35° N): evidence for focused melt supply and lower crustal dike injection. J. Geophys. Res. 110, B09101 (2005).

    Article  Google Scholar 

  22. Pockalny, R. A., Fox, P. J., Fornari, D. J., Macdonald, K. C. & Perfit, M. R. Tectonic reconstruction of the Clipperton and Siqueiros fracture zones: evidence and consequences of plate motion change for the last 3 Myr. J. Geophys. Res. 102, 3167–3181 (1997).

    Article  Google Scholar 

  23. Sloan, H. & Patriat, P. Kinematics of the North American-African plate boundary between 28° and 29° N during the last 10 Ma: evolution of the axial geometry and spreading rate and direction. Earth Planet. Sci. Lett. 113, 323–341 (1992).

    Article  Google Scholar 

  24. Wilson, D. S. Tectonic history of the Juan de Fuca Ridge over the last 40 million years. J. Geophys. Res. 93, 11863–11876 (1988).

    Article  Google Scholar 

  25. Bodmer, M., Toomey, D. R., Hooft, E. E. E., Nabelek, J. & Braunmiller, J. Seismic anisotropy beneath the Juan de Fuca plate system: evidence for heterogeneous mantle flow. Geology 43, 1095–1098 (2015).

    Google Scholar 

  26. Pollard, D. D., Segall, P. & Delaney, P. T. Formation and interpretation of dilatant echelon cracks. Geol. Soc. Am. Bull. 93, 1291–1303 (1982).

    Article  Google Scholar 

  27. Morgan, J. P. & Sandwell, D. T. Systematics of ridge propagation south of 30° S. Earth Planet. Sci. Lett. 121, 245–258 (1994).

    Article  Google Scholar 

  28. Barth, G. A. & Mutter, J. C. Variability in oceanic crustal thickness and structure: multichannel seismic reflection results from the northern East Pacific Rise. J. Geophys. Res. 101, 17951–17975 (1996).

    Article  Google Scholar 

  29. Canales, J. P., Detrick, R. S., Toomey, D. R. & Wilcock, W.S. D. Segment-scale variations in the crustal structure of 150–300 kyr old fast spreading oceanic crust (East Pacific Rise, 8° 15′ N–10° 5′ N) from wide-angle seismic refraction profiles. Geophys. J. Int. 152, 766–794 (2003).

    Article  Google Scholar 

  30. Marjanović, M., Carbotte, S. M., Nedimović, M. R. & Canales, J. P. Gravity and seismic study of crustal structure along the Juan de Fuca Ridge axis and across pseudofaults on the ridge flanks. Geochem. Geophys. Geosyst. 12, Q05008 (2011).

    Article  Google Scholar 

  31. Wanless, V. D., Perfit, M. R., Klein, E. M., White, S. & Ridley, W. I. Reconciling geochemical and geophysical observations of magma supply and melt distribution at the 9° N overlapping spreading center, East Pacific Rise. Geochem. Geophys. Geosyst. 13, Q11005 (2012).

    Article  Google Scholar 

  32. Hooft, E. E. E., Detrick, R. S., Toomey, D. R., Collins, J. A. & Lin, J. Crustal thickness and structure along three contrasting spreading segments of the Mid-Atlantic Ridge, 33.5°–35° N. J. Geophys. Res. 105, 8205–8226 (2000).

    Article  Google Scholar 

  33. Morgan, J. P. & Chen, Y. J. The genesis of oceanic crust: magma injection, hydrothermal circulation, and crust flow. J. Geophys. Res. 98, 6283–6297 (1993).

    Article  Google Scholar 

  34. Toomey, D. R. & Hooft, E. E. E. Mantle upwelling, magmatic differentiation, and the meaning of axial depth at fast-spreading ridges. Geology 36, 679–682 (2008).

    Article  Google Scholar 

  35. Sinton, J. M., Wilson, D. S., Christie, D. M., Hey, R. N. & Delaney, J. R. Petrologic consequences of rift propagation on oceanic spreading ridges. Earth Planet. Sci. Lett. 62, 193–207 (1983).

    Article  Google Scholar 

  36. Shoberg, T. & Stein, S. Investigation of spreading center evolution by joint inversion of seafloor magnetic anomaly and tectonic fabric data. Earth Planet. Sci. Lett. 122, 195–206 (1994).

    Article  Google Scholar 

  37. Cormier, M. H., Scheirer, D. S. & Macdonald, K. C. Evolution of the East Pacific Rise at 16°–19° S since 5 Ma: bisection of overlapping spreading centers by new, rapidly propagating ridge segments. Mar. Geophys. Res. 18, 53–84 (1996).

    Article  Google Scholar 

  38. Bazin, S. et al. A three-dimensional study of a crustal low velocity region beneath the 9° 03′ N overlapping spreading center. Geophys. Res. Lett. 30, 111–114 (2003).

    Article  Google Scholar 

  39. Dunn, R. A., Martinez, F. & Conder, J. A. Crustal construction and magma chamber properties along the Eastern Lau Spreading Center. Earth Planet. Sci. Lett. 371–372, 112–124 (2013).

    Article  Google Scholar 

  40. Collier, J. S. & Sinha, M. C. Seismic mapping of a magma chamber beneath the Valu Fa Ridge, Lau Basin. J. Geophys. Res. 97, 14031–14053 (1992).

    Article  Google Scholar 

  41. Kent, G. M., Harding, A. J. & Orcutt, J. A. Distribution of magma beneath the East Pacific Rise between the Clipperton Transform and the 9° 17′ N deval from forward modeling of common depth point data. J. Geophys. Res. 98, 13945–13969 (1993).

    Article  Google Scholar 

  42. Nedimović, M. R. et al. Frozen magma lenses below the oceanic crust. Nature 436, 1149–1152 (2005).

    Article  Google Scholar 

  43. Crawford, W. C. & Webb, S. C. Variations in the distribution of magma in the lower crust and at the Moho beneath the East Pacific Rise at 9°–10° N. Earth Planet. Sci. Lett. 203, 117–130 (2002).

    Article  Google Scholar 

  44. Zha, Y. et al. Seismological imaging of ridge–arc interaction beneath the Eastern Lau Spreading Center from OBS ambient noise tomography. Earth Planet. Sci. Lett. 408, 194–206 (2014).

    Article  Google Scholar 

  45. Neumann, G. A. & Forsyth, D. W. The paradox of the axial profile: isostatic compensation along the axis of the Mid-Atlantic Ridge? J. Geophys. Res. 98, 17891–17910 (1993).

    Article  Google Scholar 

  46. Cannat, M. How thick is the magmatic crust at slow spreading oceanic ridges? J. Geophys. Res. 101, 2847–2857 (1996).

    Article  Google Scholar 

  47. Magde, L. S. & Sparks, D. W. Three-dimensional mantle upwelling, melt generation, and melt migration beneath segment slow spreading ridges. J. Geophys. Res. 102, 20571–20583 (1997).

    Article  Google Scholar 

  48. White, S. M., Haymon, R. M., Fornari, D. J., Perfit, M. R. & Macdonald, K. C. Correlation between volcanic and tectonic segmentation of fast-spreading ridges: evidence from volcanic structures and lava flow morphology on the East Pacific Rise at 9°–10° N. J. Geophys. Res. 107, B8–2173 (2002).

    Google Scholar 

  49. Aghaei, O. et al. Crustal thickness and Moho character of the fast-spreading East Pacific Rise from 9° 42′ N to 9° 57′ N from poststack-migrated 3-D MCS data. Geochem. Geophys. Geosyst. 15, 634–657 (2014).

    Article  Google Scholar 

  50. Karsten, J. L., Delaney, J. R., Rhodes, J. M. & Liias, R. A. Spatial and temporal evolution of magmatic systems beneath the Endeavour segment, Juan de Fuca Ridge: tectonic and petrologic constraints. J. Geophys. Res. 95, 19235–19256 (1990).

    Article  Google Scholar 

  51. Barclay, A. H., Toomey, D. R. & Solomon, S. C. Seismic structure and crustal magmatism at the Mid-Atlantic Ridge, 35° N. J. Geophys. Res. 103, 17827–17844 (1998).

    Article  Google Scholar 

  52. Zhang, Z., Shen, Y. & Zhao, L. Finite-frequency sensitivity kernels for head waves. Geophys. J. Int. 171, 847–856 (2007).

    Article  Google Scholar 

  53. Nicolas, A. & Christensen, N. I. in Composition, Structure and Dynamics of the Lithosphere-Asthenosphere System (eds Fuchs, K. & Froidevaux, C.) 111–123 (American Geophysical Union, 1987).

    Book  Google Scholar 

  54. Becker, T. W., Chevrot, S., Schulte-Pelkum, V. & Blackman, D. K. Statistical properties of seismic anisotropy predicted by upper mantle geodynamic models. J. Geophys. Res. 111, B08309 (2006).

    Article  Google Scholar 

  55. Backus, G. E. Possible forms of seismic anisotropy of the uppermost mantle under oceans. J. Geophys. Res. 70, 3429–3439 (1965).

    Article  Google Scholar 

  56. Shearer, P. M. & Orcutt, J. A. Compressional and shear wave anisotropy in the oceanic lithosphere-the Ngendei seismic refraction experiment. Geophys. J. Int. 87, 967–1003 (1986).

    Article  Google Scholar 

  57. Taylor, J. R. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (University Science Books, 1994).

    Google Scholar 

  58. Toomey, D. R., Solomon, S. C. & Purdy, G. M. Tomographic imaging of the shallow crustal structure of the East Pacific Rise at 9° 30′ N. J. Geophys. Res. 99, 24135–24157 (1994).

    Article  Google Scholar 

  59. Moser, T. J. Shortest path calculation of seismic rays. Geophysics 56, 59–67 (1991).

    Article  Google Scholar 

  60. Toomey, D. R. & Foulger, G. R. Tomographic inversion of local earthquake data from the Hengill-Grensdalur Central Volcano Complex, Iceland. J. Geophys. Res. 94, 17497–17510 (1989).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the officers and crew of the RV Marcus G. Langseth as well as the OBS teams from Scripps Institution of Oceanography and Woods Hole Oceanographic Institution for their assistance in the acquisition of the seismic data. Additional assistance was provided by onboard passive acoustic technicians and marine mammal observers to ensure that data collection was accomplished in compliance with guidelines set forth by marine environmental assessments and permits. The experiment and analysis were supported by the NSF under grants numbered OCE-0454700 to the University of Washington and OCE-0454747 and OCE-0651123 to the University of Oregon.

Author information

Authors and Affiliations

Authors

Contributions

D.R.T., E.E.E.H. and W.S.D.W. designed the experiment and participated in data collection and processing. B.P.V. conducted the tomographic analysis. B.P.V. and D.R.T. wrote the initial manuscript with comments from co-authors. All authors discussed the results and their implications and assisted in revising the manuscript.

Corresponding author

Correspondence to Brandon P. VanderBeek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5916 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

VanderBeek, B., Toomey, D., Hooft, E. et al. Segmentation of mid-ocean ridges attributed to oblique mantle divergence. Nature Geosci 9, 636–642 (2016). https://doi.org/10.1038/ngeo2745

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2745

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene