Abstract
Phobos and Deimos, the two small satellites of Mars, are thought either to be asteroids captured by the planet or to have formed in a disc of debris surrounding Mars following a giant impact1,2,3,4. Both scenarios, however, have been unable to account for the current Mars system1,2,3,5,6,7. Here we use numerical simulations to suggest that Phobos and Deimos accreted from the outer portion of a debris disc formed after a giant impact on Mars. In our simulations, larger moons form from material in the denser inner disc and migrate outwards due to gravitational interactions with the disc. The resulting orbital resonances spread outwards and gather dispersed outer disc debris, facilitating accretion into two satellites of sizes similar to Phobos and Deimos. The larger inner moons fall back to Mars after about 5 million years due to the tidal pull of the planet, after which the two outer satellites evolve into Phobos- and Deimos-like orbits. The proposed scenario can explain why Mars has two small satellites instead of one large moon. Our model predicts that Phobos and Deimos are composed of a mixture of material from Mars and the impactor.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Martian moons exploration MMX: sample return mission to Phobos elucidating formation processes of habitable planets
Earth, Planets and Space Open Access 20 January 2022
-
The Mars system revealed by the Martian Moons eXploration mission
Earth, Planets and Space Open Access 03 January 2022
-
In situ observations of ions and magnetic field around Phobos: the mass spectrum analyzer (MSA) for the Martian Moons eXploration (MMX) mission
Earth, Planets and Space Open Access 13 December 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Burns, J. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 1283–1301 (Univ. Press of Arizona, 1992).
Peale, S. J. in Treatise on Geophysics Vol. 10 (eds Schubert, G. & Spohn, T.) 465–508 (Elsevier B. V., 2007).
Rosenblatt, P. The origin of the Martian moons revisited. Astron. Astrophys. Rev. 19, 44 (2011).
Safranov, V. S. et al. in Satellites (eds Burns, J. A. & Matthews, M. S.) 89–116 (Univ. Press of Arizona, 1986).
Citron, R. I., Genda, H. & Ida, S. Formation of Phobos and Deimos via a giant impact. Icarus 252, 334–338 (2015).
Craddock, R. A. Are Phobos and Deimos the result of a giant impact? Icarus 211, 1150–1161 (2011).
Rosenblatt, P. & Charnoz, S. On the formation of the Martian moons from a circum-martian accretion disc. Icarus 221, 806–815 (2012).
Charnoz, S., Salmon, J. & Crida, A. The recent formation of Saturn’s moons from viscous spreading of the main rings. Nature 465, 752–754 (2010).
Charnoz, S. et al. Accretion of Saturn’s mid-sized moons during the viscous spreading of young massive rings: solving the paradox of silicate-poor rings vs silicate-rich moons. Icarus 216, 535–550 (2011).
Marinova, M. M., Aharonson, O. & Asphaug, E. Geophysical consequences of planetary-scale impacts into a Mars-like planet. Icarus 211, 960–985 (2011).
Wetherill, G. W. & Stewart, G. R. Formation of planetary embryos—Effects of fragmentation low relative velocity and independent variation of eccentricity and inclination. Icarus 106, 190–209 (1993).
Kokubo, E. & Ida, S. Formation of protoplanets from planetesimals in the Solar nebula. Icarus 143, 15–27 (2000).
Kokubo, E. & Ida, S. Oligarchic growth of protoplanets. Icarus 131, 171–178 (1998).
Hyodo, R., Ohtsuki, K. & Takeda, T. Formation of multiple-satellite systems from low-mass circumplanetary particle discs. Astrophys. J. 799, 40 (2015).
Yoder, C. F. Tidal rigidity of Phobos. Icarus 439, 327–346 (1982).
Richardson, D. C., Leinhardt, Z. M., Melosh, H. J., Bootke, W. F. & Asphaug, E. in Asteroids III (eds Bottke, B., Cellino, A., Paolocchi, P. & Binzel, R.) 501–515 (Univ. Press of Arizona, 2002).
Andert, T. P. et al. Precise mass determination and the nature of Phobos. Geophys. Res. Lett. 37, L09202 (2010).
Murchie, S., Thomas, P., Rivkin, A. & Chabot, N. in Asteroids IV (eds Michel, P., DeMeo, F. E. & Bottke, W. F.) 451–467 (Univ. Press of Arizona, 2015).
Pieters, C. M., Murchie, S., Thomas, N. & Britt, D. Composition of surface materials on the moons of Mars. Planet. Space Sci. 102, 144–151 (2014).
Genda, H., Kokubo, E. & Ida, S. Merging criteria for giant impacts of protoplanets. Astrophys. J. 744, 137–144 (2012).
Monaghan, J. J. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1991).
Tillotson, J. H. Metallic Equations of State for Hypervelocity Impact Report No. GA-3216, July 18 (General Atomic, San Diego, California, 1962).
Von Neumann, J. & Richtmyer, R. D. A method for the numerical calculations of hydrodynamics shocks. J. Appl. Phys. 21, 232–237 (1950).
Kokubo, E., Ida, S. & Makino, J. Evolution of a circumterrestrial disc and formation of a single moon. Icarus 148, 419–436 (2000).
Kinoshita, H., Yoshida, H. & Nakai, H. Symplectic integrators and their application to dynamical astronomy. Celest. Mech. Dyn. Astron. 50, 59–71 (1991).
Everhart, E. in The Dynamics of Comets: Their Origin and Evolution (eds Carusi, A. & Valsecchi, G. B.) 185–202 (Reidel, 1985).
Black, B. A. & Mittal, T. The demise of Phobos and development of a Martian ring system. Nature Geosci. 8, 913–917 (2015).
Acknowledgements
P.R. is financially supported by the Belgian PRODEX programme managed by the European Space Agency in collaboration with the Belgian Federal Science Policy Office. A.T. has been supported by the EC’s 7th Framework Programme (FP7/2008-2017) under grant agreement #263466. Calculations were performed on the clusters at the Institute of Physics of Rennes (IPR), at the Royal Observatory of Belgium, and at the S-CAPAD computational centre of IPGP (France). R.H. acknowledges the financial support by JSPS Grants-in-Aid for JSPS fellows (15J02110). S.C. thanks the Institut Universitaire de France (IUF) for financial support. We also acknowledge the financial support of the UnivEarthS Labex programme at Sorbonne Paris Cité (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). We acknowledge E. Asphaug for his very helpful review. We would like to dedicate this paper to the memory of André Brahic.
Author information
Authors and Affiliations
Contributions
P.R. and S.C. developed the proposed scenario for the formation of Phobos and Deimos. S.C. also ran the one-dimensional model of massive moon formation at the Roche limit. K.M.D. and M.T.-D. built and ran the N-body code for accretion of small debris in the outer part of the disc. A.T. computed the mass repartition of debris and produced the animations in the Supplementary Information. A.T. and S.T. built and ran models of tidal evolution of the orbit of the two satellites after their formation. R.H. ran the SPH code of post-impact accretion-disc formation provided by H.G.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 794 kb)
Supplementary Information
Supplementary Information (GIF 10120 kb)
Supplementary Information
Supplementary Information (GIF 1323 kb)
Supplementary Information
Supplementary Information (GIF 1424 kb)
Rights and permissions
About this article
Cite this article
Rosenblatt, P., Charnoz, S., Dunseath, K. et al. Accretion of Phobos and Deimos in an extended debris disc stirred by transient moons. Nature Geosci 9, 581–583 (2016). https://doi.org/10.1038/ngeo2742
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ngeo2742
This article is cited by
-
The Mars system revealed by the Martian Moons eXploration mission
Earth, Planets and Space (2022)
-
Martian moons exploration MMX: sample return mission to Phobos elucidating formation processes of habitable planets
Earth, Planets and Space (2022)
-
Analytical protocols for Phobos regolith samples returned by the Martian Moons eXploration (MMX) mission
Earth, Planets and Space (2021)
-
In situ observations of ions and magnetic field around Phobos: the mass spectrum analyzer (MSA) for the Martian Moons eXploration (MMX) mission
Earth, Planets and Space (2021)
-
Visibility analysis of Phobos to support a science and exploration platform
Earth, Planets and Space (2021)