Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Organic matter losses in German Alps forest soils since the 1970s most likely caused by warming


Climate warming is expected to induce soil organic carbon losses in mountain soils that result, in turn, in reduced soil fertility, reduced water storage capacity and positive feedback on climate change. Here we combine two independent sets of measurements of soil organic carbon from forest soils in the German Alps—repeated measurements from 1976 to 2010 and from 1987 to 2011—to show that warming has caused a 14% decline in topsoil organic carbon stocks. The decreases in soil carbon occurred over a period of significant increases in six-month summer temperatures, with the most substantial decreases occurring at sites with large changes in mean annual temperature. Organic carbon stock decreases were largest—on average 32%—in forest soils with initial topsoil organic carbon stocks greater than 8 kg C m−2, which can be found predominantly on calcareous bedrock. However, organic carbon stocks of forest soils with lower initial carbon stocks, as well as soils under pasture or at elevations above 1,150 m, have not changed significantly. We conclude that warming is the most likely reason for the observed losses of soil organic carbon, but that site, land use and elevation may ameliorate the effects of climate change.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Recent topsoil OC stock changes in soils of the German Alps with different land use.
Figure 2: Recent change of forest topsoil OC stocks in the German Alps depends on initial topsoil OC stocks.
Figure 3: Effect of site, climate and climate change variables on recent forest topsoil OC stock changes in the German Alps.


  1. 1

    Post, W. M., Emanuel, W. R., Zinke, P. J. & Stangenberger, A. G. Soil carbon pools and world life zones. Nature 298, 156–159 (1982).

    Article  Google Scholar 

  2. 2

    Brang, P. Resistance and elasticity: promising concepts for the management of protection forests in the European Alps. Forest Ecol. Manage. 45, 107–119 (2001).

    Article  Google Scholar 

  3. 3

    Schröter, D. et al. Ecosystem service supply and vulnerability to global change in Europe. Science 310, 1333–1337 (2005).

    Article  Google Scholar 

  4. 4

    Davidson, E. A., Trumbore, S. E. & Amundson, R. Soil warming and organic carbon content. Nature 408, 789–790 (2000).

    Article  Google Scholar 

  5. 5

    Knorr, W., Prentice, I. C., House, J. I. & Holland, E. A. Long-term sensitivity of soil carbon turnover to warming. Nature 433, 298–301 (2005).

    Article  Google Scholar 

  6. 6

    Hagedorn, F., Mulder, J. & Jandl, R. Mountain soils under a changing climate and land-use. Biogeochemistry 97, 1–5 (2010).

    Article  Google Scholar 

  7. 7

    Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).

    Article  Google Scholar 

  8. 8

    Prietzel, J., Stetter, U., Klemmt, H. J. & Rehfuess, K. E. Recent carbon and nitrogen accumulation and acidification in soils of two Scots pine ecosystems in Southern Germany. Plant Soil 289, 153–170 (2006).

    Article  Google Scholar 

  9. 9

    Grüneberg, E., Ziche, D. E. & Wellbrock, N. Organic carbon stocks and sequestration rates of forest soils in Germany. Glob. Change Biol. 20, 2644–2662 (2014).

    Article  Google Scholar 

  10. 10

    Schrumpf, M., Kaiser, K. & Schulze, E. D. Soil organic carbon and total nitrogen gains in an old growth deciduous forest in Germany. PLoS ONE 9, e89364 (2014).

    Article  Google Scholar 

  11. 11

    Rodeghiero, M. & Cescatti, A. Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps. Glob. Change Biol. 11, 1024–1041 (2005).

    Article  Google Scholar 

  12. 12

    Djukic, I., Zehetner, F., Tatzber, M. & Gerzabek, M. H. Soil organic-matter stocks and characteristics along an Alpine elevation gradient. J. Plant Nutr. Soil Sci. 173, 30–38 (2010).

    Article  Google Scholar 

  13. 13

    Hagedorn, F., Moeri, A., Walthert, L. & Zimmermann, S. Kohlenstoff in Schweizer Waldböden–bei Klimaerwärmung eine potenzielle CO2-Quelle. Schweiz. Z. Forstwes. 12, 530–535 (2010).

    Article  Google Scholar 

  14. 14

    Prietzel, J. & Christophel, D. Organic carbon stocks in forest soils of the German Alps. Geoderma 221–222, 28–39 (2014).

    Article  Google Scholar 

  15. 15

    Schindlbacher, A., Zechmeister-Boltenstern, S. & Jandl, R. Carbon losses due to soil warming: do autotrophic and heterotrophic soil respiration respond equally? Glob. Change Biol. 15, 901–913 (2009).

    Article  Google Scholar 

  16. 16

    Hagedorn, F. et al. Short-term responses of ecosystem carbon fluxes to experimental warming at the Swiss alpine treeline. Biogeochemistry 97, 7–19 (2010).

    Article  Google Scholar 

  17. 17

    Rustad, L. E. The response of terrestrial ecosystems to global climate change: towards an integrated approach. Sci. Total Environ. 404, 222–235 (2008).

    Article  Google Scholar 

  18. 18

    Schubert, A. Bayerische Waldboden-Dauerbeobachtungsflächen–Bodenuntersuchungen. Forstl. Forsch. Münch. 187, 1–223 (2002).

    Google Scholar 

  19. 19

    Bochter, R., Neuerburg, W. & Zech, W. Humus und Humusschwund im Gebirge. Nationalpark Berchtesgaden Forschungsber. 2, 1–110 (1981).

    Google Scholar 

  20. 20

    Hoffmann, U., Hoffmann, T., Jurasinski, G., Glatzel, S. & Kuhn, J. Assessing the spatial variability of soil organic carbon stocks in an alpine setting (Grindelwald, Swiss Alps). Geoderma 232–234, 270–283 (2014).

    Article  Google Scholar 

  21. 21

    Klämt, A. Langzeitverhalten der Lufttemperatur in Baden–Württemberg und Bayern (ed. Kliwa, A. K.) Vol. 5, 1–74 (KLIWA-Berichte, 2004).

    Google Scholar 

  22. 22

    Auer, I. et al. HISTALP—historical instrumental climatological surface time series of the greater Alpine region 1760–2003. Int. J. Climatol. 27, 17–46 (2007).

    Article  Google Scholar 

  23. 23

    Qian, B., Gregorich, E. G., Gameda, S., Hopkins, D. W. & Wang, X. L. Observed soil temperature trends associated with climate change in Canada. J. Geophys. Res. 116, D02106 (2011).

    Google Scholar 

  24. 24

    Thuille, A. & Schulze, E.-D. Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Glob. Change Biol. 12, 325–342 (2006).

    Article  Google Scholar 

  25. 25

    Pötzelsberger, E. & Hasenauer, H. Soil change after 50 years of converting Norway spruce dominated age class forests into single tree selection forests. Forest Ecol. Manage. 338, 176–182 (2015).

    Article  Google Scholar 

  26. 26

    Nave, L. E., Vance, E. D., Swanston, C. W. & Curtis, P. S. Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N-mineralization. Geoderma 153, 231–240 (2009).

    Article  Google Scholar 

  27. 27

    Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nature Geosci. 3, 315–322 (2010).

    Article  Google Scholar 

  28. 28

    Hasenauer, H., Nemani, R., Schadauer, K. & Running, S. W. Forest growth response to changing climate between 1961 and 1990 in Austria. Forest Ecol. Manage. 122, 209–219 (1999).

    Article  Google Scholar 

  29. 29

    Hartl-Meier, C. et al. Vulnerability of Norway spruce to climate change in mountain forests of the European Alps. Clim. Res. 60, 119–132 (2014).

    Article  Google Scholar 

  30. 30

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 446, 165–173 (2006).

    Article  Google Scholar 

  31. 31

    Todd-Brown, K. E. O. et al. Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences 11, 2341–2356 (2014).

    Article  Google Scholar 

  32. 32

    Guidi, C., Magid, J., Rodeghiero, M., Gianelle, D. & Vesterdal, L. Effects of forest expansion on mountain grassland: changes within soil organic carbon fractions. Plant Soil 385, 373–387 (2014).

    Article  Google Scholar 

  33. 33

    Meyer, S., Leifeld, J., Bahn, M. & Fuhrer, J. Land-use change in subalpine grassland soils: effect on particulate organic carbon fractions and aggregation. J. Plant Nutr. Soil Sci. 175, 401–409 (2012).

    Article  Google Scholar 

  34. 34

    von Lützow, M. et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur. J. Soil Sci. 57, 426–445 (2006).

    Article  Google Scholar 

  35. 35

    Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    Article  Google Scholar 

  36. 36

    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).

    Article  Google Scholar 

  37. 37

    Kirschbaum, M. U. F. Modelling forest growth and carbon storage in response to increasing CO2 and temperature. Tellus B 51, 871–888 (1999).

    Article  Google Scholar 

  38. 38

    Jandl, R. et al. How strongly can forest management influence soil carbon sequestration? Geoderma 137, 253–268 (2007).

    Article  Google Scholar 

  39. 39

    Covington, W. W. Changes in forest floor organic matter and nutrient content following clear cutting in northern hardwoods. Ecology 62, 41–48 (1981).

    Article  Google Scholar 

  40. 40

    Yanai, R. D., Currie, W. S. & Goodale, C. L. Soil carbon dynamics after forest harvest: an ecosystem paradigm reconsidered. Ecosystems 6, 197–212 (2003).

    Article  Google Scholar 

  41. 41

    Schnell, A. & Bauer, A. Die zweite Bundeswaldinventur 2002: Ergebnisse für Bayern. LWF Wiss. 49, 1–102 (2005).

    Google Scholar 

  42. 42

    Spielvogel, S., Prietzel, J. & Kögel-Knabner, I. Soil organic matter changes in a spruce ecosystem 25 years after disturbance. Soil Sci. Soc. Am. J. 70, 2130–2145 (2006).

    Article  Google Scholar 

  43. 43

    Jandl, R. et al. Current status, uncertainty and future needs in soil organic carbon monitoring. Sci. Total Environ. 468–469, 376–383 (2014).

    Article  Google Scholar 

  44. 44

    Erb, K. H. et al. Bias in the attribution of forest carbon sinks. Nature Clim. Change 3, 854–856 (2013).

    Article  Google Scholar 

  45. 45

    Perruchoud, D., Kienast, F., Kaufmann, E. & Bräker, O. U. 20th century carbon budget of forest soils in the Alps. Ecosystems 2, 320–337 (1999).

    Article  Google Scholar 

  46. 46

    Wieser, G. et al. Effects of atmospheric and climate change at the timberline of the Central European Alps. Ann. For. Sci. 66, 402 (2009).

    Article  Google Scholar 

  47. 47

    Müller-Westermeier, G. Ber. Dtsch. Wetterd. Vol. 193 (Offenbach, 1995).

    Google Scholar 

  48. 48

    Maier, U. & Müller-Westermeier, G. Ber. Dtsch. Wetterd. Vol. 235 (Offenbach, 2010).

    Google Scholar 

  49. 49

    Maier, U., Kudlinski, J. & Müller-Westermeier, G. Ber. Dtsch. Wetterd. Vol. 223 (Offenbach, 2003).

    Google Scholar 

  50. 50

    Rosenberg, M. S., Adams, D. C. & Gurevich, J. MetaWin—Statistical Software Analysis for Meta-analysis with Resampling Tests (Sinauer Associates Publishing, 1997).

    Google Scholar 

Download references


We thank C. Pfab and T. Bartelt for assistance in sample preparation and analysis. R. Bochter, W. Neuerburg and H. Röhle kindly showed us the exact locations of the profiles where the first SOC inventories of the Set 2 study sites had been conducted in 1976. We appreciate the help of E. Hobley with language editing. Financial support for this study was provided by the Bavarian Ministry of Nutrition, Agriculture and Forestry (Grant B 69).

Author information




J.P. wrote the paper, designed the study, calculated mean SOC stock, temperature and precipitation changes, and performed the statistical data evaluation. L.Z. provided regionalized climate data and contributed to the main text and Methods (climate change issues). A.S. conducted the first SOC inventory of Set 1 and provided the respective data. D.C. conducted the second SOC inventories of Set 1 and 2, scrutinized and evaluated all soil data, and calculated SOC stock changes for the different study sites.

Corresponding author

Correspondence to Jörg Prietzel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 981 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prietzel, J., Zimmermann, L., Schubert, A. et al. Organic matter losses in German Alps forest soils since the 1970s most likely caused by warming. Nature Geosci 9, 543–548 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing