Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Southern Ocean warming delayed by circumpolar upwelling and equatorward transport

Abstract

The Southern Ocean has shown little warming over recent decades, in stark contrast to the rapid warming observed in the Arctic. Along the northern flank of the Antarctic Circumpolar Current, however, the upper ocean has warmed substantially. Here we present analyses of oceanographic observations and general circulation model simulations showing that these patterns—of delayed warming south of the Antarctic Circumpolar Current and enhanced warming to the north—are fundamentally shaped by the Southern Ocean’s meridional overturning circulation: wind-driven upwelling of unmodified water from depth damps warming around Antarctica; greenhouse gas-induced surface heat uptake is largely balanced by anomalous northward heat transport associated with the equatorward flow of surface waters; and heat is preferentially stored where surface waters are subducted to the north. Further, these processes are primarily due to passive advection of the anomalous warming signal by climatological ocean currents; changes in ocean circulation are secondary. These findings suggest the Southern Ocean responds to greenhouse gas forcing on the centennial, or longer, timescale over which the deep ocean waters that are upwelled to the surface are warmed themselves. It is against this background of gradual warming that multidecadal Southern Ocean temperature trends must be understood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observed trends over 1982–2012.
Figure 2: CMIP5-mean trends over 1982–2012 (left) and response to CO2 forcing (right).
Figure 3: MITgcm response to uniform GHG forcing (left) and passive-tracer forcing (right).

Similar content being viewed by others

References

  1. Manabe, S., Bryan, K. & Spelman, M. J. Transient response of a global ocean–atmosphere model to a doubling of atmospheric carbon dioxide. J. Phys. Oceangr. 20, 722–749 (1990).

    Article  Google Scholar 

  2. Manabe, S., Stouffer, R. J., Spelman, M. J. & Bryan, K. Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part 1: Annual mean response. J. Clim. 4, 785–818 (1991).

    Article  Google Scholar 

  3. Stouffer, R. J. Timescales of climate response. J. Clim. 17, 209–217 (2004).

    Article  Google Scholar 

  4. Li, C., von Storch, J.-S. & Marotzke, J. Deep-ocean heat uptake and equilibrium climate response. Clim. Dynam. 40, 1071–1086 (2013).

    Article  Google Scholar 

  5. Armour, K. C., Bitz, C. M. & Roe, G. H. Time-varying climate sensitivity from regional feedbacks. J. Clim. 26, 4518–4534 (2013).

    Article  Google Scholar 

  6. Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  7. Marshall, J. et al. The ocean’s role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing. Phil. Trans. R. Soc. A 372, 20130040 (2014).

    Article  Google Scholar 

  8. Masson-Delmotte, V. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 383–464 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  9. Xie, S.-P. et al. Global warming pattern formation: sea surface temperature and rainfall. J. Clim. 23, 966–986 (2010).

    Article  Google Scholar 

  10. Yin, J. et al. Different magnitudes of projected subsurface ocean warming around Greenland and Antarctica. Nature Geosci. 4, 524–528 (2011).

    Article  Google Scholar 

  11. Gent, P. R. The Gent-McWilliams parameterization: 20/20 hindsight. Ocean Modelling 39, 2–9 (2011).

    Article  Google Scholar 

  12. Salée, J.-B. et al. Assessment of Southern Ocean mixed-layer depths in CMIP5 models: historical bias and forcing response. J. Geophys. Res. 118, 1845–1862 (2013).

    Article  Google Scholar 

  13. Kirkman, C. H. & Bitz, C. M. The effect of the sea ice freshwater flux on Southern Ocean temperatures in CCSM3: deep-ocean warming and delayed surface warming. J. Clim. 24, 2224–2237 (2011).

    Article  Google Scholar 

  14. Xie, P. & Vallis, G. K. The passive and active nature of ocean heat uptake in idealized climate change experiments. Clim. Dynam. 38, 667–684 (2012).

    Article  Google Scholar 

  15. Bintanja, R., van Oldenborgh, G. J., Drijfhout, S. S., Wouters, B. & Katsman, C. A. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nature Geosci. 6, 376–379 (2013).

    Article  Google Scholar 

  16. Thompson, D. W. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geosci. 4, 741–749 (2011).

    Article  Google Scholar 

  17. Oke, P. R. & England, M. H. Oceanic response to changes in the latitude of the Southern Hemisphere subpolar westerly winds. J. Clim. 17, 1040–1054 (2004).

    Article  Google Scholar 

  18. Fyfe, J. C., Saenko, O. A., Zickfeld, K., Eby, M. & Weaver, A. J. The role of poleward-intensifying winds on Southern Ocean warming. J. Clim. 20, 5391–5400 (2007).

    Article  Google Scholar 

  19. Hutchinson, D. K., England, M. H., Santoso, A. & Hogg, A. M. Interhemispheric asymmetry in transient global warming: the role of Drake Passage. Geophys. Res. Lett. 40, 1587–1593 (2013).

    Article  Google Scholar 

  20. Korhonen, H. et al. Aerosol climate feedback due to decadal increases in Southern Hemisphere wind speeds. Geophys. Res. Lett. 37, L02805 (2010).

    Article  Google Scholar 

  21. Marshall, J. & Speer, K. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nature Geosci. 5, 171–180 (2012).

    Article  Google Scholar 

  22. Karsten, R. H. & Marshall, J. Constructing the residual circulation of the ACC from observations. J. Phys. Oceanogr. 32, 3315–3327 (2002).

    Article  Google Scholar 

  23. Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002).

    Article  Google Scholar 

  24. Yu, L. & Weller, R. A. Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Am. Meteorol. Soc. 88, 527–539 (2007).

    Article  Google Scholar 

  25. Good, S. A., Martin, M. J. & Rayner, N. A. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. 118, 6704–6716 (2013).

    Article  Google Scholar 

  26. Ishii, M. & Kimoto, M. Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr. 65, 287–299 (2009).

    Article  Google Scholar 

  27. Gille, S. T. Decadal-scale temperature trends in the Southern Hemisphere ocean. J. Clim. 21, 4749–4765 (2008).

    Article  Google Scholar 

  28. Rhein, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 255–316 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  29. Church, J. A. et al. in Understanding Sea Level Rise and Variability (eds Church, J. A. et al.) 143–176 (Blackwell, 2010).

    Book  Google Scholar 

  30. Sutton, P. & Roemmich, D. Decadal steric and sea surface height changes in the Southern Hemisphere. Geophys. Res. Lett. 38, L08604 (2011).

    Article  Google Scholar 

  31. Durack, P. J., Gleckler, P. J., Landerer, F. W. & Taylor, K. E. Quantifying underestimates of long-term upper-ocean warming. Nature Clim. Change 4, 999–1005 (2014).

    Article  Google Scholar 

  32. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experimental design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  33. Cai, W., Cowan, T., Godfrey, S. & Wijffels, S. Simulations of processes associated with the fast warming rate of the southern midlatitude ocean. J. Clim. 23, 197–206 (2010).

    Article  Google Scholar 

  34. Kuhlbrodt, T. & Gregory, J. M. Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett. 39, L18608 (2012).

    Article  Google Scholar 

  35. Frölicher, T. L. et al. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Clim. 28, 862–886 (2015).

    Article  Google Scholar 

  36. Ferrari, R. & Ferreira, D. What processes drive the ocean heat transport? Ocean Modelling 38, 171–186 (2011).

    Article  Google Scholar 

  37. Screen, J. A., Gillett, N. P., Stevens, D. P., Marshall, G. J. & Roscoe, H. K. The role of eddies in the Southern Ocean temperature response to the southern annular mode. J. Clim. 22, 806–818 (2009).

    Article  Google Scholar 

  38. Bitz, C. M. & Polvani, L. M. Antarctic climate response to stratospheric ozone depletion in a fine resolution ocean climate model. Geophys. Res. Lett. 39, L20705 (2012).

    Article  Google Scholar 

  39. Ferreira, D., Marshall, J., Bitz, C. M., Solomon, S. & Plumb, A. Antarctic Ocean and sea ice response to ozone depletion: a two timescale problem. J. Clim. 28, 1206–1226 (2015).

    Article  Google Scholar 

  40. Sigmond, M. & Fyfe, J. C. The Antarctic sea ice response to the ozone hole in climate models. J. Clim. 27, 1336–1342 (2014).

    Article  Google Scholar 

  41. Marshall, J., Hill, C., Perelman, L. & Adcroft, A. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res. 102, 5733–5752 (1997).

    Article  Google Scholar 

  42. Marshall, J., Adcroft, A., Hill, C., Perelman, L. & Heisey, C. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. 102, 5753–5766 (1997).

    Article  Google Scholar 

  43. Marshall, J. et al. The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Clim. Dynam. 44, 2287–2299 (2015).

    Article  Google Scholar 

  44. Donohoe, A., Armour, K. C., Pendergrass, A. G. & Battisti, D. S. Shortwave and longwave radiative contributions to global warming under increasing CO2 . Proc. Natl Acad. Sci. USA 111, 16700–16705 (2014).

    Article  Google Scholar 

  45. Banks, H. T. & Gregory, J. M. Mechanisms of ocean heat uptake in a coupled climate model and the implications for tracer based predictions of ocean heat uptake. Geophys. Res. Lett. 33, L07608 (2006).

    Article  Google Scholar 

  46. Downes, S. M., Bindoff, N. L. & Rintoul, S. R. Impacts of climate change on the subduction of mode and intermediate water masses in the Southern Ocean. J. Clim. 22, 3289–3302 (2009).

    Article  Google Scholar 

  47. Gille, S. T. Meridional displacement of the Antarctic Circumpolar Current. Phil. Trans. R. Soc. A. 372, 20130273 (2014).

    Article  Google Scholar 

  48. Swart, N. C. & Fyfe, J. C. The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends. Geophys. Res. Lett. 40, 4328–4332 (2013).

    Article  Google Scholar 

  49. Pauling, A. G., Bitz, C. M., Smith, I. J. & Langhorne, P. J. The response of the Southern Ocean and Antarctic sea ice to fresh water from ice shelves in an Earth System Model. J. Clim. 29, 1655–1672 (2016).

    Article  Google Scholar 

  50. Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s historical merged land–ocean temperature analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).

    Article  Google Scholar 

  51. Steele, M., Morley, R. & Ermold, W. PHC: a global ocean hydrography with a high quality Arctic Ocean. J. Clim. 14, 2079–2087 (2001).

    Article  Google Scholar 

  52. Griffies, S. et al. Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modelling 26, 1–46 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank R. Abernathey, C. Bitz, S. Emerson, Y. Kostov, L.-P. Nadeau, L. Polvani, P. Rhines, G. Roe, L. Thompson and L. Zanna for enlightening feedback; and J.-M. Campin and G. Forget for technical help. The authors are grateful for support from the National Science Foundation through grants OCE-1259388 (J.R.S.), OCE-1338814 (J.M.), OCE-1523641 (K.C.A.) and PLR-1341497 (E.R.N.); from the National Aeronautics and Space Administration through award NNX11AL79G (K.C.A.); and from the Joint Program on the Science and Policy of Global Change, which is funded by a number of federal agencies and a consortium of 40 industrial and foundation sponsors (J.R.S.).

Author information

Authors and Affiliations

Authors

Contributions

K.C.A. performed the analyses and wrote the manuscript. J.R.S. performed the ocean-only simulations and associated diagnostics. All authors contributed to the design of the study and interpretation of the results.

Corresponding author

Correspondence to Kyle C. Armour.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2966 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armour, K., Marshall, J., Scott, J. et al. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nature Geosci 9, 549–554 (2016). https://doi.org/10.1038/ngeo2731

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2731

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing