Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High atmosphere–ocean exchange of semivolatile aromatic hydrocarbons

Abstract

Polycyclic aromatic hydrocarbons, and other semivolatile aromatic-like compounds, are an important and ubiquitous fraction of organic matter in the environment. The occurrence of semivolatile aromatic hydrocarbons is due to anthropogenic sources such as incomplete combustion of fossil fuels or oil spills, and other biogenic sources1,2,3,4,5,6,7. However, their global transport, fate and relevance for the carbon cycle have been poorly assessed, especially in terms of fluxes3,5,8,9,10,11. Here we report a global assessment of the occurrence and atmosphere–ocean fluxes of 64 polycyclic aromatic hydrocarbons analysed in paired atmospheric and seawater samples from the tropical and subtropical Atlantic, Pacific and Indian oceans. The global atmospheric input of polycyclic aromatic hydrocarbons to the global ocean is estimated at 0.09 Tg per month, four times greater than the input from the Deepwater Horizon spill6. Moreover, the environmental concentrations of total semivolatile aromatic-like compounds were 102–103 times higher than those of the targeted polycyclic aromatic hydrocarbons, with a relevant contribution of an aromatic unresolved complex mixture. These concentrations drive a large global deposition of carbon, estimated at 400 Tg C yr−1, around 15% of the oceanic CO2 uptake12.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Occurrence of PAHs in the global oceans.
Figure 2: Measured atmosphere–ocean exchange of PAHs.
Figure 3: Estimates of oceanic atmosphere–ocean exchanges of PAHs.
Figure 4: Comparison of the semivolatile aromatic-like compounds (SALCs) with the 64 targeted PAHs.

References

  1. 1

    Lima, A. L. C., Farrington, J. W. & Reddy, C. M. Combustion-derived polycyclic aromatic hydrocarbons in the environment—a review. Environ. Forensics 6, 109–131 (2005).

    Article  Google Scholar 

  2. 2

    Melbye, A. G. et al. Chemical and toxicological characterization of an unresolved complex mixture-rich biodegraded crude oil. Environ. Toxicol. Chem. 28, 1815–1824 (2009).

    Article  Google Scholar 

  3. 3

    Zhang, Y. & Tao, S. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos. Environ. 43, 812–819 (2009).

    Article  Google Scholar 

  4. 4

    Cabrerizo, A. et al. Ubiquitous net volatilization of polycyclic aromatic hydrocarbons from soils and parameters influencing their soil–air partitioning. Environ. Sci. Technol. 45, 4740–4747 (2011).

    Article  Google Scholar 

  5. 5

    Berrojalbiz, N. et al. Biogeochemical and physical controls on concentrations of polycyclic aromatic hydrocarbons in water and plankton of the Mediterranean and Black Seas. Glob. Biogeochem. Cycles 25, 1–14 (2011).

    Article  Google Scholar 

  6. 6

    Reddy, C. M. et al. Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proc. Natl Acad. Sci. USA 109, 20229–20234 (2012).

    Article  Google Scholar 

  7. 7

    White, H. K., Xu, L., Hartmann, P., Quinn, J. G. & Reddy, C. M. Unresolved complex mixture (UCM) in coastal environments is derived from fossil sources. Environ. Sci. Technol. 47, 726–731 (2013).

    Article  Google Scholar 

  8. 8

    Nizzetto, L. et al. PAHs in air and seawater along a North–South Atlantic transect: trends, processes and possible sources. Environ. Sci. Technol. 42, 1580–1585 (2008).

    Article  Google Scholar 

  9. 9

    Castro-Jiménez, J., Berrojalbiz, N., Wollgast, J. & Dachs, J. Polycyclic aromatic hydrocarbons (PAHs) in the Mediterranean Sea: atmospheric occurrence, deposition and decoupling with settling fluxes in the water column. Environ. Pollut. 166, 40–47 (2012).

    Article  Google Scholar 

  10. 10

    Carpenter, L. J., Archer, S. D. & Beale, R. Ocean–atmosphere trace gas exchange. Chem. Soc. Rev. 41, 6473–6506 (2012).

    Article  Google Scholar 

  11. 11

    Cabrerizo, A., Galbán-Malagón, C., Del Vento, S. & Dachs, J. Sources and fate of polycyclic aromatic hydrocarbons in the Antarctic and Southern Ocean atmosphere. Glob. Biogeochem. Cycles 28, 1424–1436 (2014).

    Article  Google Scholar 

  12. 12

    Le Quéré, C. et al. Global carbon budget 2015. Earth Syst. Sci. Data 7, 349–396 (2015).

    Article  Google Scholar 

  13. 13

    Park, J.-H. et al. Active atmosphere–ecosystem exchange of the vast majority of detected volatile organic compounds. Science 341, 643–647 (2013).

    Article  Google Scholar 

  14. 14

    Yang, M. et al. Air–sea fluxes of oxygenated volatile organic compounds across the Atlantic Ocean. Atmos. Chem. Phys. 14, 7499–7517 (2014).

    Article  Google Scholar 

  15. 15

    Dachs, J. et al. High atmosphere–ocean exchange of organic carbon in the NE subtropical Atlantic. Geophys. Res. Lett. 32, L21807 (2005).

    Article  Google Scholar 

  16. 16

    Hauser, E. J., Dickhut, R. M., Falconer, R. & Wozniak, A. S. Improved method for quantifying the air–sea flux of volatile and semi-volatile organic carbon. Limnol. Oceanogr. 11, 287–297 (2013).

    Article  Google Scholar 

  17. 17

    Ruiz-Halpern, S. et al. Ocean–atmosphere exchange of organic carbon and CO2 surrounding the Antarctic Peninsula. Biogeosciences 11, 2755–2770 (2014).

    Article  Google Scholar 

  18. 18

    Lohmann, R., Breivik, K., Dachs, J. & Muir, D. Global fate of POPs: current and future research directions. Environ. Pollut. 150, 150–165 (2007).

    Article  Google Scholar 

  19. 19

    Ma, Y. et al. Deposition of polycyclic aromatic hydrocarbons in the North Pacific and the Arctic. J. Geophys. Res. 118, 5822–5829 (2013).

    Google Scholar 

  20. 20

    Lammel, G. Polycyclic aromatic compounds in the atmosphere—a review identifying research needs. Polycycl. Aromat. Compd. 35, 316–329 (2015).

    Article  Google Scholar 

  21. 21

    Hylland, K. Polycyclic aromatic hydrocarbon (PAH) ecotoxicology in marine ecosystems. J. Toxicol. Environ. Health Sci. A 69, 109–123 (2006).

    Article  Google Scholar 

  22. 22

    Keyte, I. J., Harrison, R. M. & Lammel, G. Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons—a review. Chem. Soc. Rev. 42, 9333–9391 (2013).

    Article  Google Scholar 

  23. 23

    González-Gaya, B., Zúñiga-Rival, J., Ojeda, M. J., Jiménez, B. & Dachs, J. Field measurements of the atmospheric dry deposition fluxes and velocities of polycyclic aromatic hydrocarbons to the global oceans. Environ. Sci. Technol. 48, 5583–5592 (2014).

    Article  Google Scholar 

  24. 24

    Xu, Y. et al. The spatial distribution and potential sources of polycyclic aromatic hydrocarbons (PAHs) over the Asian marginal seas and the Indian and Atlantic Oceans. J. Geophys. Res. 117, D07302 (2012).

    Google Scholar 

  25. 25

    Duarte, C. M. Seafaring in the 21st Century: the Malaspina 2010 Circumnavigation Expedition. Limnol. Oceanogr. Bull. 24, 11–14 (2015).

    Article  Google Scholar 

  26. 26

    Jurado, E. et al. Wet deposition of persistent organic pollutants to the global oceans. Environ. Sci. Technol. 39, 2426–2435 (2005).

    Article  Google Scholar 

  27. 27

    Sarmiento, J. L. Ocean Biogeochemical Dynamics (Princeton Univ. Press, 2013).

    Book  Google Scholar 

  28. 28

    Jurado, E., Dachs, J., Duarte, C. M. & Simó, R. Atmospheric deposition of organic and black carbon to the global oceans. Atmos. Environ. 42, 7931–7939 (2008).

    Article  Google Scholar 

  29. 29

    King, G. M., Kostka, J. E., Hazen, T. C. & Sobecky, P. A. Microbial responses to the Deepwater Horizon oil spill: from coastal wetlands to the deep sea. Annu. Rev. Mar. Sci. 7, 377–401 (2015).

    Article  Google Scholar 

  30. 30

    Chan, A. W. H. et al. Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs). Atmos. Chem. Phys. 9, 3049–3060 (2009).

    Article  Google Scholar 

  31. 31

    Berrojalbiz, N. et al. Accumulation and cycling of polycyclic aromatic hydrocarbons in Zooplankton. Environ. Sci. Technol. 43, 2295–2301 (2009).

    Article  Google Scholar 

  32. 32

    Farrington, J. W. & Quinn, J. G. “Unresolved Complex Mixture” (UCM): a brief history of the term and moving beyond it. Mar. Pollut. Bull. 96, 29–31 (2015).

    Article  Google Scholar 

  33. 33

    Donkin, P., Smith, E. L. & Rowland, S. J. Toxic effects of unresolved complex mixtures of aromatic hydrocarbons accumulated by mussels, Mytilus edulis, from contaminated field sites. Environ. Sci. Technol. 37, 4825–4830 (2003).

    Article  Google Scholar 

  34. 34

    Bamford, H. A., Poster, D. L. & Baker, J. E. Temperature dependence of Henry’s law constants of thirteen polycyclic aromatic hydrocarbons between 4 °C and 31 °C. Environ. Toxicol. Chem. 18, 1905–1912 (1999).

    Google Scholar 

  35. 35

    Schwarzenbach, R. P., Gschwend, P. M. & Imboden, D. M. Environmental Organic Chemistry 2nd edn, 133–180 (John Wiley, 2003).

    Google Scholar 

  36. 36

    Burkhard, L. P. Estimating dissolved organic carbon partition coefficients for nonionic organic chemicals. Environ. Sci. Technol. 34, 4663–4668 (2000).

    Article  Google Scholar 

  37. 37

    Nightingale, P. D., Liss, P. S. & Schlosser, P. Measurements of air–sea gas transfer during an open ocean algal bloom. Geophys. Res. Lett. 27, 2117–2120 (2000).

    Article  Google Scholar 

  38. 38

    Livingstone, D. M. & Imboden, D. M. The non-linear influence of wind-speed variability on gas transfer in lakes. Tellus B 45, 275–295 (1993).

    Article  Google Scholar 

  39. 39

    Costello, M. J., Cheung, A. & De Hauwere, N. Surface area and the seabed area, volume, depth, slope, and topographic variation for the world’s seas, oceans, and countries. Environ. Sci. Technol. 44, 8821–8828 (2010).

    Article  Google Scholar 

  40. 40

    Spivakovsky, C. M. et al. Three-dimensional climatological distribution of tropospheric OH: update and evaluation. J. Geophys. Res. 105, 8931–8980 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Spanish Ministry of Economy and Competitiveness (Circumnavigation Expedition Malaspina 2010: Global Change and Biodiversity Exploration of the Global Ocean. CSD2008-00077). B.G.-G. and M.-C.F.-P. acknowledge a predoctoral fellowship from BBVA Foundation and the Spanish National Research Council (CSIC), respectively. CSIC and the Spanish Government are also acknowledged for additional financial support. Thanks to RV Hespérides staff and UTM technicians during the cruise. D. García, G. Caballero and M. J. Ojeda are acknowledged for collaborating in the laboratory work.

Author information

Affiliations

Authors

Contributions

B.G.-G. participated in the sampling campaign, analysed the samples, estimated the fluxes and wrote the paper. J.D. participated in the sampling campaign and designed the sampling strategy and work, estimated the fluxes, and wrote the paper. C.M.D. led the Malaspina 2010 project and coordinated the overall sampling strategy for the project. L.Mé contributed in the chemical identification. M.-C.F.-P., L.Mo and B.J. participated in the sampling campaign. All authors have contributed to the discussion of the results and commented on the final version of the manuscript.

Corresponding author

Correspondence to Jordi Dachs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2529 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

González-Gaya, B., Fernández-Pinos, MC., Morales, L. et al. High atmosphere–ocean exchange of semivolatile aromatic hydrocarbons. Nature Geosci 9, 438–442 (2016). https://doi.org/10.1038/ngeo2714

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing