Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Two-step rise of atmospheric oxygen linked to the growth of continents


Earth owes its oxygenated atmosphere to its unique claim on life, but how the atmosphere evolved from an initially oxygen-free state remains unresolved. The rise of atmospheric oxygen occurred in two stages: approximately 2.5 to 2.0 billion years ago during the Great Oxidation Event and roughly 2 billion years later during the Neoproterozoic Oxygenation Event. We propose that the formation of continents about 2.7 to 2.5 billion years ago, perhaps due to the initiation of plate tectonics, may have led to oxygenation by the following mechanisms. In the first stage, the change in composition of Earth's crust from iron- and magnesium-rich mafic rocks to feldspar- and quartz-rich felsic rocks could have caused a decrease in the oxidative efficiency of the Earth's surface, allowing atmospheric O2 to rise. Over the next billion years, as carbon steadily accumulated on the continents, metamorphic and magmatic reactions within this growing continental carbon reservoir facilitated a gradual increase in the total long-term input of CO2 to the ocean–atmosphere system. Given that O2 is produced during organic carbon burial, the increased CO2 input may have triggered a second rise in O2. A two-step rise in atmospheric O2 may therefore be a natural consequence of plate tectonics, continent formation and the growth of a crustal carbon reservoir.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Constraints on continental evolution.
Figure 2: Compositional systematics of magma differentiation.
Figure 3: Whole-Earth carbon and oxygen cycling.
Figure 4: Box modelling of carbon and oxygen.
Figure 5: O2 inputs and outputs.


  1. 1

    Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506, 307–315 (2014).

    Article  Google Scholar 

  2. 2

    Farquhar, J. & Wing, B. A. Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213, 1–13 (2003).

    Article  Google Scholar 

  3. 3

    Kump, L. R., Kasting, J. F. & Barley, M. E. Rise of atmospheric oxygen and the “upside-down” Archean mantle. Geochem. Geophys. Geosyst. 2, 2000GC000114 (2001).

    Article  Google Scholar 

  4. 4

    Kasting, J. F., Eggler, D. H. & Raeburn, S. P. Mantle redox evolution and the oxidation state of the Archean atmosphere. J. Geol. 101, 245–257 (1993).

    Article  Google Scholar 

  5. 5

    Canfield, D. E. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005).

    Article  Google Scholar 

  6. 6

    Kanzaki, Y. & Murakami, T. Estimates of atmospheric O2 in the Paleoproterozoic from paleosols. Geochim. Cosmochim. Acta 174, 263–290 (2016).

    Article  Google Scholar 

  7. 7

    Berner, R. A. The Phanerozoic Carbon Cycle: CO2 and O2 (Oxford Univ. Press, 2004).

    Google Scholar 

  8. 8

    Planavsky, N. J. et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nature Geosci. 7, 283–286 (2014).

    Article  Google Scholar 

  9. 9

    Anbar, A. D. et al. A whiff of oxygen before the great oxidation event? Science 317, 1903–1906 (2007).

    Article  Google Scholar 

  10. 10

    David, L. A. & Alm, E. J. Rapid evolutionary innovation during an Archaean genetic expansion. Nature 469, 93–96 (2011).

    Article  Google Scholar 

  11. 11

    Crowe, S. A. et al. Atmospheric oxygenation three billion years ago. Nature 501, 535–538 (2013).

    Article  Google Scholar 

  12. 12

    Laakso, T. A. & Schrag, D. P. Regulation of atmospheric oxygen during the Proterozoic. Earth Planet. Sci. Lett. 388, 81–91 (2014).

    Article  Google Scholar 

  13. 13

    Catling, D. C. & Claire, M. W. How Earth's atmosphere evolved to an oxic state: a status report. Earth Planet. Sci. Lett. 237, 1–20 (2005).

    Article  Google Scholar 

  14. 14

    Catling, D. C., Zahnle, K. J. & Mckay, C. P. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293, 839–843 (2001).

    Article  Google Scholar 

  15. 15

    Gaillard, F., Scaillet, B. & Arndt, N. T. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478, 229–232 (2011).

    Article  Google Scholar 

  16. 16

    Li, Z.-X. A. & Lee, C.-T. A. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet. Sci. Lett. 228, 483–493 (2004).

    Article  Google Scholar 

  17. 17

    Canil, D. Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature 389, 842–845 (1997).

    Article  Google Scholar 

  18. 18

    Lee, C.-T. A., Thurner, S., Paterson, S. R. & Cao, W. The rise and fall of continental arcs: interplays between magmatism, uplift, weathering and climate. Earth Planet. Sci. Lett. 425, 105–119 (2015).

    Article  Google Scholar 

  19. 19

    Voice, P. J., Kowalewski, M. & Eriksson, K. A. Quantifying the timing and rate of crustal evolution: global compilation of radiometrically dated detrital zircon grains. J. Geol. 119, 109–126 (2011).

    Article  Google Scholar 

  20. 20

    Dhuime, B., Hawkesworth, C. J., Cawood, P. A. & Storey, C. D. A change in the geodynamics of continental growth 3 billion years ago. Science 335, 1334–1336 (2012).

    Article  Google Scholar 

  21. 21

    McKenzie, N. R., Horton, B. K., Loomis, S. E., Stockli, D. F. & Lee, C.-T. A. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science 352, 444–447 (2016).

    Article  Google Scholar 

  22. 22

    McCulloch, M. T. & Bennett, V. C. Progressive growth of the Earth's continental crust and depleted mantle; geochemical constraints. Geochim. Cosmochim. Acta 58, 4717–4738 (1994).

    Article  Google Scholar 

  23. 23

    Cawood, P. A., Hawkesworth, C. J. & Dhuime, B. The continental record and the generation of continental crust. Geol. Soc. Am. Bull. 125, 14–32 (2012).

    Article  Google Scholar 

  24. 24

    McKenzie, N. R., Hughes, N. C., Gill, B. C. & Myrow, P. M. Plate tectonic influences on Neoproterozoic-early Paleozoic climate and animal evolution. Geology 42, 127–130 (2014).

    Article  Google Scholar 

  25. 25

    Watson, E. B. & Harrison, T. M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 64, 295–304 (1983).

    Article  Google Scholar 

  26. 26

    Keller, C. B. & Schoene, B. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature 485, 490–493 (2012).

    Article  Google Scholar 

  27. 27

    Dhuime, B., Wuestefeld, A. & Hawkesworth, C. J. Emergence of modern continental crust about 3 billion years ago. Nature Geosci. 8, 552–555 (2015).

    Article  Google Scholar 

  28. 28

    Taylor, S. R. & McLennan, S. M. The Continental Crust: Its Composition and Evolution (Blackwell, 1985).

    Google Scholar 

  29. 29

    Tang, M., Chen, K. & Rudnick, R. L. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science 351, 372–375 (2016).

    Article  Google Scholar 

  30. 30

    Lee, C.-T. A. & Morton, D. M. High silica granites: terminal porosity and crystal settling. Earth Planet. Sci. Lett. 409, 23–31 (2015).

    Article  Google Scholar 

  31. 31

    Lee, C.-T. A., Morton, D. M., Farner, M. J. & Moitra, P. Field and model constraints on silicic melt segregation by compaction/hindered settling: the role of water and its effect on latent heat release. Am. Mineral. 100, 1762–1777 (2015).

    Article  Google Scholar 

  32. 32

    Weller, M. B., Lenardic, A. & O'Neill, C. The effects of internal heating and large scale variations on tectonic bi-stability in terrestrial planets. Earth Planet. Sci. Lett. 420, 85–94 (2015).

    Article  Google Scholar 

  33. 33

    Jenner, F. E. & O'Neill, H. S. C. Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochem. Geophys. Geosyst. 13, Q02005 (2012).

    Google Scholar 

  34. 34

    Kress, V. C. & Carmichael, I. S. E. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib. Mineral. Petrol. 108, 82–92 (1991).

    Article  Google Scholar 

  35. 35

    Lee, C.-T. A. et al. The redox state of arc mantle using Zn/Fe systematics. Nature 468, 681–685 (2010).

    Article  Google Scholar 

  36. 36

    Li, C. & Ripley, E. M. Sulfur contents at sulfide-liquid or anhydrite saturation in silicate melts: empirical equations and example applications. Econ. Geol. 104, 405–412 (2009).

    Article  Google Scholar 

  37. 37

    Lee, C.-T. A. et al. Copper systematics in arc magmas and implications for crust-mantle differentiation. Science 336, 64–68 (2012).

    Article  Google Scholar 

  38. 38

    Kasting, J. F. Earth's early atmosphere. Science 259, 920–926 (1993).

    Article  Google Scholar 

  39. 39

    Planavsky, N. J. et al. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346, 635–638 (2014).

    Article  Google Scholar 

  40. 40

    Goldblatt, C., Lenton, T. M. & Watson, A. J. Bistability of atmospheric oxygen and the Great Oxidation. Nature 443, 683–686 (2006).

    Article  Google Scholar 

  41. 41

    Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in Earth's interior. Earth Planet. Sci. Lett. 298, 1–13 (2010).

    Article  Google Scholar 

  42. 42

    Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature. J. Geophys. Res. 86, 9776–9782 (1981).

    Article  Google Scholar 

  43. 43

    Berner, R. A. & Caldeira, K. The need for mass balance and feedback in the geochemical carbon cycle. Geology 25, 955–956 (1997).

    Article  Google Scholar 

  44. 44

    Hayes, J. M. & Waldbauer, J. R. The carbon cycle and associated redox processes through time. Phil. Trans. R. Soc. B 361, 931–950 (2006).

    Article  Google Scholar 

  45. 45

    Lee, C.-T. A. et al. Continental arc-island arc fluctuations, growth of crustal carbonates and long-term climate change. Geosphere 9, 21–36 (2013).

    Article  Google Scholar 

  46. 46

    Holland, H. D. Why the atmosphere became oxygenated. Geochim. Cosmochim. Acta 73, 5241–5255 (2009).

    Article  Google Scholar 

  47. 47

    Lee, C.-T. A. & Lackey, J. S. Global continental arc flare-ups and their relation to long-term greenhouse conditions. Elements 11, 125–130 (2015).

    Article  Google Scholar 

  48. 48

    Hanson, R. B. & Barton, M. D. Thermal development of low-pressure metamorphic belts: results from two-dimensional numerical models. J. Geophys. Res. 94, 10363–10377 (1989).

    Article  Google Scholar 

  49. 49

    Holland, H. D. The Chemistry of the Atmosphere and Oceans Vol. 351 (John Wiley, 1978).

    Google Scholar 

  50. 50

    Kump, L. R. & Arthur, M. A. Interpreting carbon-isotope excursions: carbonates and organic matter. Chem. Geol. 161, 181–198 (1999).

    Article  Google Scholar 

  51. 51

    Krissansen-Totton, J., Buick, R. & Catling, D. C. A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. Am. J. Sci. 315, 275–316 (2015).

    Article  Google Scholar 

  52. 52

    Kasting, J. F. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Res. 34, 205–229 (1987).

    Article  Google Scholar 

  53. 53

    Sagan, C. & Mullen, G. Earth and Mars: evolution of atmospheres and surface temperatures. Science 177, 52–56 (1972).

    Article  Google Scholar 

  54. 54

    Taijika, E. Faint young Sun and the carbon cycle: implication for the Proterozoic global glaciations. Earth Planet. Sci. Lett. 214, 443–453 (2003).

    Article  Google Scholar 

  55. 55

    Kah, L. C. & Riding, R. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria. Geology 35, 799–802 (2007).

    Article  Google Scholar 

  56. 56

    Sheldon, N. D. Precambrian paleosols and atmospheric CO2 levels. Precambrian Res. 147, 148–155 (2006).

    Article  Google Scholar 

  57. 57

    Lee, C.-T. A. & Bachmann, O. How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics. Earth Planet. Sci. Lett. 393, 266–274 (2014).

    Article  Google Scholar 

  58. 58

    Lee, C.-T. A., Morton, D. M., Kistler, R. W. & Baird, A. K. Petrology and tectonics of Phanerozoic continent formation: from island arcs to accretion and continental arc magmatism. Earth Planet. Sci. Lett. 263, 370–387 (2007).

    Article  Google Scholar 

  59. 59

    Liu, Y., Samaha, N.-T. & Baker, D. R. Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts. Geochem. Cosmochim. Acta 71, 1783–1799 (2007).

    Article  Google Scholar 

  60. 60

    Burton, M. R., Sawyer, G. M. & Granieri, D. Deep carbon emissions from volcanoes. Rev. Mineral. Geochem. 75, 323–354 (2013).

    Article  Google Scholar 

  61. 61

    Petsch, S. T. in Treatise of Geochemistry 2nd edn, Vol. 12 (eds Holland, H. & Turekian, K.) 217–238 (2014).

    Book  Google Scholar 

Download references


This work was supported by NSF Frontiers of Earth Systems Dynamics grant OCE-1338842. Discussions with B. Dyer, R. Dasgupta, B. Shen, N. Planavsky, C. Reinhard and the 'CIA' (continental-island arc) working group are appreciated.

Author information




C.-T. A. L. conceived the idea, developed the models and wrote the manuscript. L.Y.Y provided conceptual insight into box modelling and atmospheric chemistry. N.R.M provided insight into zircon data and general geology. Y.Y. and K.O. provided insight into global carbon cycle modelling. A.L. provided insight into mantle dynamics. All authors contributed to editing the manuscript and validating the models.

Corresponding author

Correspondence to Cin-Ty A. Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, CT., Yeung, L., McKenzie, N. et al. Two-step rise of atmospheric oxygen linked to the growth of continents. Nature Geosci 9, 417–424 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing