Formation of lower continental crust by relamination of buoyant arc lavas and plutons

Article metrics


The formation of the Earth's continents is enigmatic. Volcanic arc magmas generated above subduction zones have geochemical compositions that are similar to continental crust, implying that arc magmatic processes played a central role in generating continental crust. Yet the deep crust within volcanic arcs has a very different composition from crust at similar depths beneath the continents. It is therefore unclear how arc crust is transformed into continental crust. The densest parts of arc lower crust may delaminate and become recycled into the underlying mantle. Here we show, however, that even after delamination, arc lower crust still has significantly different trace element contents from continental lower crust. We suggest that it is not delamination that determines the composition of continental crust, but relamination. In our conceptual model, buoyant magmatic rocks generated at arcs are subducted. Then, upon heating at depth, they ascend and are relaminated at the base of the overlying crust. A review of the average compositions of buoyant magmatic rocks — lavas and plutons — sampled from the Aleutians, Izu–Bonin–Marianas, Kohistan and Talkeetna arcs reveals that they fall within the range of estimated major and trace elements in lower continental crust. Relamination may thus provide an efficient process for generating lower continental crust.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Comparison of trace elements in arc versus continental lower crust.
Figure 2: Incompatible element concentration in LCC and in Talkeetna and Kohistan arc lower crust.
Figure 3: Incompatible trace-element concentration in Talkeetna and Kohistan arc crust as a function of depth.
Figure 4: Incompatible element concentration in arc compositions that are buoyant compared with mantle peridotite.
Figure 5: Compositions of 1:1 mixtures of buoyant lava and plutonic compositions, compared with BCC and LCC.


  1. 1

    Kelemen, P. B. Genesis of high Mg# andesites and the continental crust. Contrib. Mineral. Petrol. 120, 1–19 (1995).

  2. 2

    Rudnick, R. L. Making continental crust. Nature 378, 571–577 (1995).

  3. 3

    Taylor, S. R. The origin and growth of continents. Tectonophysics. 4, 17–34 (1967).

  4. 4

    Taylor, S. R. & McLennan, S. M. The Continental Crust: Its Composition and Evolution (Blackwell, 1985).

  5. 5

    Taylor, S. R. & McLennan, S. M. The geochemical evolution of the continental crust. Rev. Geophys. 33, 241–265 (1995).

  6. 6

    Kelemen, P. B., Hanghøj, K. & Greene, A. in Treatise on Geochemistry Vol. 3 (ed. Rudnick, R. L.) 593–659 (Elsevier-Pergamon, 2003).

  7. 7

    Kelemen, P. B., Hanghøj, K. & Greene, A. in Treatise on Geochemistry 2nd edn, Vol. 4 (ed. Rudnick, R. L.) 746–805 (Elsevier-Pergamon, 2014).

  8. 8

    Holbrook, W. S., Mooney, W. D. & Christensen, N. I. in Continental Lower Crust (eds Fountain, D. M., Arculus, R. & Kay, R. W.) 1–42 (Elsevier, 1992).

  9. 9

    Laske, G., Masters, G. & Reif, C. CRUST2.0: A New Global Crustal Model at 2 × 2 Degrees (2001).

  10. 10

    Christensen, N. I. & Mooney, W. D. Seismic velocity structure and composition of the continental crust; a global view. J. Geophys. Res. B 100, 9761–9788 (1995).

  11. 11

    Rudnick, R. L. & Fountain, D. M. Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys. 33, 267–309 (1995).

  12. 12

    Hacker, B. R., Kelemen, P. B. & Behn, M. D. Continental lower crust. Annu. Rev. Earth Planet. Sci. 43, 167–205 (2015).

  13. 13

    Rudnick, R. L. & Gao, S. in Treatise on Geochemistry Vol. 3 (ed. Rudnick, R. L.) 1–64 (Elsevier-Pergamon, 2003).

  14. 14

    Rudnick, R. L. & Gao, S. in Treatise on Geochemistry 2nd edn, Vol. 4 (ed. Rudnick, R. L.) 1–51 (Elsevier-Pergamon, 2014).

  15. 15

    Rudnick, R. L. & Presper, T. in Granulites and Crustal Evolution (eds Vielzeuf, D. & Vidal, P.) 523–550 (Kluwer, 1990).

  16. 16

    Huang, Y., Chunakov, V., Mantovani, F., Rudnick, R. L. & McDonough, W. F. A reference Earth model for the heat-producing elements and associated geoneutrino flux. G-cubed 14, 2003–2029 (2013).

  17. 17

    Behn, M. D. & Kelemen, P. B. Relationship between seismic P-wave velocity and the composition of anhydrous igneous and meta-igneous rocks. Geochem. Geophys. Geosyst. 4, 1041 (2003).

  18. 18

    Hacker, B. R., Kelemen, P. B. & Behn, M. D. Differentiation of the continental crust by relamination. Earth Planet. Sci. Lett. 307, 501–516 (2011).

  19. 19

    Kelemen, P. B., Shimizu, N. & Dunn, T. Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Earth Planet. Sci. Lett. 120, 111–134 (1993).

  20. 20

    Hacker, B. R. H2O subduction beyond arcs. G-cubed 9, Q03001 (2008).

  21. 21

    Jagoutz, O. & Schmidt, M. W. The formation and bulk composition of modern juvenile continental crust: the Kohistan arc. Chem. Geol. 298–299, 79–96 (2012).

  22. 22

    DeBari, S. M. & Sleep, N. H. High-Mg, low-Al bulk composition of the Talkeetna island arc, Alaska: implications for primary magmas and the nature of arc crust. Geol. Soc. Am. Bull. 103, 37–47 (1991).

  23. 23

    Greene, A., DeBari, S. M., Kelemen, P. B., Blusztajn, J. & Clift, P. D. A detailed geochemical study of island arc crust: the Talkeetna arc section, south-central Alaska. J. Petrol. 47, 1051–1093 (2006).

  24. 24

    Jagoutz, O. & Kelemen, P. B. Role of arc processes in the formation of continental crust. Annu. Rev. Earth Planet. Sci. 43, 363–404 (2015).

  25. 25

    Gill, J. B. Orogenic Andesites and Plate Tectonics (Springer, 1981).

  26. 26

    Grove, T. L. et al. Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib. Mineral. Petrol. 145, 515–533 (2003).

  27. 27

    Blatter, D. L., Sisson, T. W. & Hankins, W. B. Crystallization of oxidized, moderately hydrous arc basalt at mid to lower crustal pressures: implications for andesite genesis. Contrib. Mineral. Petrol. 166, 861–886 (2013).

  28. 28

    Yogodzinski, G. M., Volynets, O. N., Koloskov, A. V., Seliverstov, N. I. & Matvenkov, V. V. Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, Far Western Aleutians. J. Petrol. 35, 163–204 (1994).

  29. 29

    Müntener, O., Kelemen, P. B. & Grove, T. L. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib. Mineral. Petrol. 141, 643–658 (2001).

  30. 30

    Anderson, A. T. Magma mixing: petrological processes and volcanological tool. J. Volc. Geotherm. Res. 1, 3–33 (1976).

  31. 31

    Sisson, T. W., Grove, T. L. & Coleman, D. S. Hornblende gabbro sill complex at Onion Valley, California, and a mixing origin for the Sierra Nevada batholith. Contrib. Mineral. Petrol. 126, 81–108 (1996).

  32. 32

    Shen, B., Jacobsen, B., Lee, C.-T., Yin, Q.-Z. & Morton, D. The Mg isotopic systematics of granitoids in continental arcs and implications for the role of chemical weathering in crust formation. Proc. Natl Acad. Sci. USA 106, 20653 (2009).

  33. 33

    Albarede, F. & Michard, A. Transfer of continental Mg, S, O, and U to the mantle through hydrothermal alteration of the oceanic crust. Chem. Geol. 57, 1–15 (1986).

  34. 34

    Rosing, M. T., Bird, D. K., Sleep, N. H., Glassley, W. & Albarede, F. The rise of continents: an essay on the geologic consequences of photosynthesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 99–113 (2006).

  35. 35

    Jagoutz, O. Were ancient granitoid compositions influenced by contemporaneous atmospheric and hydrosphere oxidation states? Terra Nova 25, 95–101 (2013).

  36. 36

    Weaver, B. L. & Tarney, J. Empirical approach to estimating the composition of the continental crust. Nature 310, 575–577 (1984).

  37. 37

    Cai, Y., Rioux, M. E., Kelemen, P. B., Goldstein, S. L. & Bolge, L. Distinctly different parental magmas for calc-alkaline plutons and tholeiitic lavas in the central and eastern Aleutian arc. Earth Planet. Sci. Lett. 431, 119–126 (2015).

  38. 38

    Kay, S. M., Kay, R. W. & Perfit, M. R. in Plutonism from Antarctica to Alaska. Geological Society of America Special Paper 241 (eds Kay, S. M. & Rapela, C. W.) 233–255 (Geol. Soc. Am., 1990).

  39. 39

    Kelemen, P. B., Yogodzinski, G. M. & Scholl, D. W. in Inside the Subduction Factory. AGU Monograph 138 (ed. Eiler, J.) 293–311 (AGU, 2003).

  40. 40

    Plank, T. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J. Petrol. 46, 921–944 (2005).

  41. 41

    Tang, M., Rudnick, R. L., McDonough, W. F., Gaschnig, R. M. & Huang, Y. Europium anomalies constrain the mass of recycled lower continental crust. Geology 43, 703–706 (2015).

  42. 42

    Behn, M. D., Kelemen, P. B., Hirth, G., Hacker, B. R. & Massonne, H. J. Diapirs as the source of the sediment signature in arc lavas. Nature Geosci. 4, 641–646 (2011).

  43. 43

    Jull, M. & Kelemen, P. B. On the conditions for lower crustal convective instability. J. Geophys. Res. 106, 6423–6446 (2001).

  44. 44

    Miller, N. C. & Behn, M. D. Timescales for the growth of sediment diapirs in subduction zones. Geophys. J. Int. 190, 1361–1377 (2012).

  45. 45

    Ringwood, A. E. & Green, D. H. An experimental investigation of the gabbro-eclogite transformation and some geophysical implications. Tectonophysics. 3, 383–427 (1966).

  46. 46

    Kay, R. W. & Kay, S. M. Creation and destruction of lower continental crust. Geol. Rundsch. 80, 259–278 (1991).

  47. 47

    Herzberg, C. T., Fyfe, W. S. & Carr, M. J. Density constraints on the formation of the continental Moho and crust. Contrib. Mineral. Petrol. 84, 1–5 (1983).

  48. 48

    Ringwood, A. E. The petrological evolution of island arc systems. J. Geol. Soc. Lond. 130, 183–204 (1974).

  49. 49

    Currie, C. A., Beaumont, C. & Huismans, R. S. The fate of subducted sediments: A case for backarc intrusion and underplating. Geology 35, 1111–1114 (2007).

  50. 50

    Whitney, D. L., Teyssier, C. & Rey, P. F. The consequences of crustal melting in continental subduction. Lithosphere 1, 323–327 (2009).

  51. 51

    Behn, M. D. & Kelemen, P. B. Stability of arc lower crust: insights from the Talkeetna arc section, south central Alaska, and the seismic structure of modern arcs. J. Geophys. Res. 111, B11207 (2006).

  52. 52

    Jagoutz, O. & Schmidt, M. W. The composition of the foundered complement to the continental crust and a re-evaluation of fluxes in arcs. Earth Planet. Sci. Lett. 371–372, 177–190 (2013).

  53. 53

    Ducea, M. N. & Saleeby, J. B. Buoyancy sources for a large, unrooted mountain range, the Sierra Nevada, California: evidence from xenolith thermobarometry. J. Geophys. Res. 101, 8229–8244 (1996).

  54. 54

    Wernicke, B. et al. Origin of high mountains in the continents: the southern Sierra Nevada. Science 271, 190–193 (1996).

  55. 55

    Walsh, E. O. & Hacker, B. R. The fate of subducted continental margins: two-stage exhumation of the high-pressure to ultrahigh-pressure Western Gneiss complex, Norway. J. Metamorph. Geol. 22, 671–689 (2004).

  56. 56

    Grove, M., Jacobson, C. E., Barth, A. P. & Vucic, A. Temporal and spatial trends of Late Cretaceous–early Tertiary underplating of Pelona and related schist beneath southern California and southwestern Arizona. Spec. Pap. Geol. Soc. Am. 374, 381–406 (2003).

  57. 57

    Bassett, D. et al. Three-dimensional velocity structure of the northern Hikurangi margin, Raukumara, New Zealand: implications for the growth of continental crust by subduction erosion and tectonic underplating. G-cubed 11, Q10013 (2010).

  58. 58

    Scherwath, M. et al. Fore-arc deformation and underplating at the northern Hikurangi margin, New Zealand. J. Geophys. Res. 115, B06408 (2010).

  59. 59

    Enami, M., Mizukami, T. & Yokoyama, K. Metamorphic evolution of garnet-bearing ultramafic rocks from the Gongen area, Sanbagawa belt, Japan. J. Metamorphic Geol. 22, 1–15 (2004).

  60. 60

    Warren, C. J., Beaumont, C. & Jamieson, R. A. Modelling tectonic styles and ultrahigh pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision. Earth Planet. Sci. Lett. 267, 129–145 (2008).

  61. 61

    Sharp, Z. D., Essene, E. J. & Smyth, J. R. Ultra-high temperatures from oxygen isotope thermometry of a coesite-sanidine grospydite. Contrib. Mineral. Petrol. 112, 358–370 (1992).

  62. 62

    Compagnoni, R. & Maffeo, B. Jadeite-bearing metagranites l.s. and related rocks in the Mount Mucrone area (Sesia-Lanzo Zone, western Italian Alps). Schweiz. Mineral. Petrogr. Mitt. 53, 355–377 (1973).

  63. 63

    Clift, P. D. & Vannucchi, P. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev. Geophys. 42, 2003RG000127 (2004).

  64. 64

    Scholl, D. W. & von Huene, R. in 4D Framework of Continental Crust. Geological Society of America Memoir 200 (eds Robert, J. et al.) 9–32 (Geol. Soc. Am., 2007).

  65. 65

    Ustaszewski, K. et al. Crust–mantle boundaries in the Taiwan–Luzon arc-continent collision system determined from local earthquake tomography and 1D models: implications for the mode of subduction polarity reversal. Tectonophysics 578, 31–49 (2012).

  66. 66

    Arai, R., Iwasaki, T., Sato, H., Abe, S. & Hirata, N. Collision and subduction structure of the Izu–Bonin arc, central Japan, revealed by refraction/wide-angle reflection analysis. Tectonophysics 475, 438–453 (2009).

  67. 67

    Tetreault, J. L. & Buiter, S. J. H. Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones. J. Geophys. Res. 117, B08403 (2012).

  68. 68

    Yamamoto, S., Nakajima, J., Hasegawa, A. & Maruyama, S. Izu–Bonin arc subduction under the Honshu island, Japan: evidence from geological and seismological aspect. Gondwana Res. 16, 572–580 (2009).

  69. 69

    Yamamoto, S., Senshu, H., Rino, S., Omori, S. & Maruyama, S. Granite subduction: arc subduction, tectonic erosion and sediment subduction. Gondwana Res. 15, 443–453 (2009).

  70. 70

    Plank, T. in Treatise on Geochemistry 2nd edn, Vol. 4 (ed. Rudnick, R. L.) 607–629 (Elsevier-Pergamon, 2014).

  71. 71

    Peterson, B. T. & DePaolo, D. J. Mass and composition of the continental crust estimated using the CRUST2.0 model. AGU Fall Meeting Abstr. 1, 1161 (2007).

  72. 72

    Holbrook, S. W., Lizarralde, D., McGeary, S., Bangs, N. & Diebold, J. Structure and composition of the Aleutian island arc and implications for continental crustal growth. Geology 27, 31–34 (1999).

  73. 73

    Fliedner, M. & Klemperer, S. L. Structure of an island arc: wide-angle seismic studies in the eastern Aleutian Islands, Alaska. J. Geophys. Res. 104, 10667–610694 (1999).

  74. 74

    Shillington, D. J., Van Avendonk, H. J. A., Holbrook, W. S., Kelemen, P. B. & Hornbach, M. J. Composition and structure of the central Aleutian island arc from arc-parallel wide-angle seismic data. Geochem. Geophys. Geosyst. 5, Q10006 (2004).

  75. 75

    Connolly, J. A. D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).

  76. 76

    Connolly, J. A. D. Multivariable phase diagrams: an algorithm based on generalized thermodynamics. Am. J. Sci. 290, 666–718 (1990).

  77. 77

    Ringwood, A. E. Chemical evolution of the terrestrial planets. Geochim. Cosmochim. Acta 30, 41–104 (1966).

  78. 78

    Barth, M. G., McDonough, W. F. & Rudnick, R. L. Tracking the budget of Nb and Ta in the continental crust. Chem. Geol. 165, 197–213 (2000).

  79. 79

    Jordan, E. K. et al. Integrated Earth Data Applications. CentAm & IBM Geochem Database Version 1.02 (2012);

  80. 80

    Hopkins, M. D., Harrison, T. M. & Manning, C. E. Constraints on Hadean geodynamics from mineral inclusions in >4 Ga zircons. Earth Planet. Sci. Lett. 298, 367–376 (2010).

  81. 81

    Grimes, C. B. et al. Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35, 643–646 (2007).

  82. 82

    Clift, P. D., Vannucchi, P. & Phipps Morgan, J. Crustal redistribution, crust-mantle recycling and Phanerozoic evolution of the continental crust. Earth Sci. Rev. 97, 80–104 (2009).

  83. 83

    Hacker, B. R. et al. Reconstruction of the Talkeetna intraoceanic arc of Alaska through thermobarometry. J. Geophys. Res. 113, B03204 (2008).

  84. 84

    Singer, B. S. et al. Along-strike trace element and isotopic variation in Aleutian Island arc basalt: subduction melts sediments and dehydrates serpentine. J. Geophys. Res. 112, B06206 (2007).

  85. 85

    Yogodzinski, G. M. et al. The role of subducted basalt in the source of island arc magmas: evidence from seafloor lavas of the western Aleutians. J. Petrol. 56, 441–492 (2015).

  86. 86

    Jagoutz, O. & Behn, M. D. Foundering of lower arc crust as an explanation for the origin of the continental Moho. Nature 504, 131–134 (2013).

Download references


We thank B. Hacker and O. Jagoutz for input and inspiration. This paper benefited from suggestions from C. Chauvel. The work was supported by NSF Research Grants EAR 13-16333 (M.D.B.), OCE 11-44759 (P.B.K.) and OCE 13-58091 (P.B.K.).

Author information

P.B.K. formulated the hypothesis and compiled geochemical data. M.D.B. performed Perple_X calculations of density for metamorphic xenolith, massif and arc samples. P.B.K. wrote the text and prepared the figures.

Correspondence to Peter B. Kelemen or Mark D. Behn.

Supplementary information

Supplementary Information

Supplementary Information (PDF 8688 kb)

Supplementary Table 1

Estimated composition of Aleutian and Izu-Bonin-Mariana lower crust and bulk crust. (XLSX 151 kb)

Supplementary Table 2

Experimental data and mixing calculations, demonstrating products of three distinct paths to produce high Mg# andesites and dacites with compositions similar to continental crust, as illustrated in Supplementary Figure 4. (XLSX 47 kb)

Supplementary Table 3

Average compositions of continental, Aleutian, Izu-Bonin-Mariana, Talkeetna and Kohistan igneous rocks, and of the buoyant fraction with calculated densities < pyrolite (3,377 kg m-3) at 700°C, 3 GPa. (XLSX 122 kb)

Supplementary Table 4

All data used in this paper, including calculated densities. (XLSX 4944 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kelemen, P., Behn, M. Formation of lower continental crust by relamination of buoyant arc lavas and plutons. Nature Geosci 9, 197–205 (2016) doi:10.1038/ngeo2662

Download citation

Further reading