Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sequestration of carbon in the deep Atlantic during the last glaciation

This article has been updated

Abstract

Atmospheric CO2 concentrations declined markedly about 70,000 years ago, when the Earth’s climate descended into the last glaciation. Much of the carbon removed from the atmosphere has been suspected to have entered the deep oceans, but evidence for increased carbon storage remains elusive. Here we use the B/Ca ratios of benthic foraminifera from several sites across the Atlantic Ocean to reconstruct changes in the carbonate ion concentration and hence the carbon inventory of the deep Atlantic across this transition. We find that deep Atlantic carbonate ion concentration declined by around 25 μmol kg−1 between 80,000 and 65,000 years ago. This drop implies that the deep Atlantic carbon inventory increased by at least 50 Gt around the same time as the amount of atmospheric carbon dropped by about 60 Gt. From a comparison with proxy records of deep circulation and climate model simulations, we infer that the carbon sequestration coincided with a shoaling of the Atlantic meridional overturning circulation. We thus conclude that changes in the Atlantic Ocean circulation may have played an important role in reductions of atmospheric CO2 concentrations during the last glaciation, by increasing the carbon storage in the deep Atlantic.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Pre-industrial Atlantic Ocean carbonate chemistry and sediment cores.
Figure 2: Reconstructed [CO32−] from C. wuellerstorfi B/Ca in the deep Atlantic (3 km) during 90–50 ka.
Figure 3: Deep Atlantic carbon budget across the MIS 5a–4 transition.
Figure 4: Temporal evolution of geochemical proxies in core TNO57-21 from the deep South Atlantic.

Change history

  • 16 February 2016

    In the version of the Article originally published online, Fig. 3a was displayed incorrectly. Additionally, the label in Fig. 2b, should have read '4°–6° N, 3.5 km'. These errors have been corrected in all versions of the Article.

References

  1. 1

    Ahn, J. & Brook, E. J. Atmospheric CO2 and climate on millennial time scales during the last glacial period. Science 322, 83–85 (2008).

    Google Scholar 

  2. 2

    Bereiter, B. et al. Mode change of millennial CO2 variability during the last glacial cycle associated with a bipolar marine carbon seesaw. Proc. Natl Acad. Sci. USA 109, 9755–9760 (2012).

    Google Scholar 

  3. 3

    Grant, K. M. et al. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744–747 (2012).

    Google Scholar 

  4. 4

    Adkins, J. F. The role of deep ocean circulation in setting glacial climates. Paleoceanography 28, 539–561 (2013).

    Google Scholar 

  5. 5

    Thornalley, D. J. R., Barker, S., Becker, J., Hall, I. R. & Knorr, G. Abrupt changes in deep Atlantic circulation during the transition to full glacial conditions. Paleoceanography 28, 253–262 (2013).

    Google Scholar 

  6. 6

    Barker, S. & Diz, P. Timing of the descent into the last ice age determined by the bipolar seesaw. Paleoceanography 29, 489–507 (2014).

    Google Scholar 

  7. 7

    Broecker, W. Glacial to interglacial changes in ocean chemistry. Prog. Oceanogr. 2, 151–197 (1982).

    Google Scholar 

  8. 8

    Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000).

    Google Scholar 

  9. 9

    Piotrowski, A., Goldstein, S. J., Hemming, S. R. & Fairbanks, R. G. Temporal relationships of carbon cycling and ocean circulation at glacial boundaries. Science 307, 1933–1938 (2005).

    Google Scholar 

  10. 10

    Martinez-Garcia, A. et al. Iron fertilization of the subantarctic ocean during the last ice age. Science 343, 1347–1350 (2014).

    Google Scholar 

  11. 11

    Hain, M. P., Sigman, D. M. & Haug, G. H. Carbon dioxide effects of Antarctic stratification, North Atlantic Intermediate Water formation, and subantarctic nutrient drawdown during the last ice age: diagnosis and synthesis in a geochemical box model. Glob. Biogeochem. Cycles 24, GB4023 (2010).

    Google Scholar 

  12. 12

    Hoogakker, B. A. A., Elderfield, H., Schmiedl, G., McCave, I. N. & Rickaby, R. E. M. Glacial–interglacial changes in bottom-water oxygen content on the Portuguese margin. Nature Geosci. 8, 40–43 (2015).

    Google Scholar 

  13. 13

    Goodwin, P. & Lauderdale, J. M. Carbonate ion concentrations, ocean carbon storage, and atmospheric CO2 . Glob. Biogeochem. Cycles 27, 882–893 (2013).

    Google Scholar 

  14. 14

    Yu, J. M., Elderfield, H. & Piotrowski, A. Seawater carbonate ion-δ13C systematics and application to glacial–interglacial North Atlantic ocean circulation. Earth Planet. Sci. Lett. 271, 209–220 (2008).

    Google Scholar 

  15. 15

    Zeebe, R. E. & Wolf-Gladrow, D. A. in CO2 in Seawater: Equilibrium, Kinetics, Isotopes (ed. Halpern, D.) (Elsevier, 2001).

    Google Scholar 

  16. 16

    Key, R. M. et al. A global ocean carbon climatology: results from global data analysis project (GLODAP). Glob. Biogeochem. Cycles 18, GB4031 (2004).

    Google Scholar 

  17. 17

    Broecker, W., Yu, J. & Putnam, A. E. Two contributors to the glacial CO2 decline. Earth Planet. Sci. Lett. 429, 191–196 (2015).

    Google Scholar 

  18. 18

    Raitzsch, M., Hathorne, E. C., Kuhnert, H., Groeneveld, J. & Bickert, T. Modern and late Pleistocene B/Ca ratios of the benthic foraminifer Planulina wuellerstorfi determined with laser ablation ICP-MS. Geology 39, 1039–1042 (2011).

    Google Scholar 

  19. 19

    Yu, J. M. & Elderfield, H. Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state. Earth Planet. Sci. Lett. 258, 73–86 (2007).

    Google Scholar 

  20. 20

    Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    Google Scholar 

  21. 21

    Yu, J. et al. Deep South Atlantic carbonate chemistry and increased interocean deep water exchange during last deglaciation. Quat. Sci. Rev. 90, 80–89 (2014).

    Google Scholar 

  22. 22

    Repschlager, J., Weinelt, M., Andersen, N., Garbe-Schonberg, D. & Schneider, R. Northern source for Deglacial and Holocene deepwater composition changes in the Eastern North Atlantic Basin. Earth Planet. Sci. Lett. 425, 256–267 (2015).

    Google Scholar 

  23. 23

    Elderfield, H. et al. Evolution of ocean temperature and ice volume through the mid-pleistocene climate transition. Science 337, 704–709 (2012).

    Google Scholar 

  24. 24

    Hodell, D. A., Charles, C. D. & Sierro, F. J. Late Pleistocene evolution of the ocean’s carbonate system. Earth Planet. Sci. Lett. 192, 109–124 (2001).

    Google Scholar 

  25. 25

    Oliver, K. I. C. et al. A synthesis of marine sediment core delta C-13 data over the last 150000 years. Clim. Past 6, 645–673 (2010).

    Google Scholar 

  26. 26

    Le, J. & Shackleton, N. J. Carbonate dissolution fluctuations in the Western equatorial Pacific during the late Quaternary. Paleoceanography 7, 21–42 (1992).

    Google Scholar 

  27. 27

    Howard, W. R. & Prell, W. L. Late quaternary CaCO3 production and preservation in the Southern Ocean—Implications for oceanic and atmospheric carbon cycling. Paleoceanography 9, 453–482 (1994).

    Google Scholar 

  28. 28

    Lyle, M. et al. in Proceedings of the Ocean Drilling Program, Scientific Results (eds Lyle, M., Koizumi, I., Richter, C. & Moore, T. C.) 163–182 (2000).

    Google Scholar 

  29. 29

    Ridgwell, A. J., Watson, A. J., Maslin, M. A. & Kaplan, J. O. Implications of coral reef buildup for the controls on atmospheric CO2 since the last glacial maximum. Paleoceanography 18, 1083 (2003).

    Google Scholar 

  30. 30

    Lea, D. & Boyle, E. Barium content of benthic foraminifera controlled by bottom–water composition. Nature 338, 751–753 (1989).

    Google Scholar 

  31. 31

    Toggweiler, J. R. Origin of the 100,000-year timescale in Antarctic temperatures and atmospheric CO2 . Paleoceanography 23, PA2211 (2008).

    Google Scholar 

  32. 32

    Broecker, W. S. & Peng, T. H. The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Glob. Biogeochem. Cycles 1, 15–29 (1987).

    Google Scholar 

  33. 33

    Emerson, S. & Archer, D. Glacial carbonate dissolution cycles and atmospheric p CO 2 : a view from the ocean bottom. Paleoceanography 7, 319–331 (1992).

    Google Scholar 

  34. 34

    Marchitto, T. M., Lynch-Stieglitz, J. & Hemming, S. R. Deep Pacific CaCO3 compensation and glacial–interglacial atmospheric CO2 . Earth Planet. Sci. Lett. 231, 317–336 (2005).

    Google Scholar 

  35. 35

    Anderson, R. F., Fleisher, M. Q., Lao, Y. & Winckler, G. Modern CaCO3 preservation in equatorial Pacific sediments in the context of late-Pleistocene glacial cycles. Mar. Chem. 111, 30–46 (2008).

    Google Scholar 

  36. 36

    Yu, J. et al. Responses of the deep ocean carbonate system to carbon reorganization during the Last Glacial–interglacial cycle. Quat. Sci. Rev. 76, 39–52 (2013).

    Google Scholar 

  37. 37

    Boyle, E. The role of vertical chemical fractionation in controlling late Quaternary atmospheric carbon dioxide. J. Geophys. Res. 93, 15701–15714 (1988).

    Google Scholar 

  38. 38

    Gibbs, M. T. & Kump, L. R. Global chemical erosion during the last glacial maximum and the present: sensitivity to changes in lithology and hydrology. Paleoceanography 9, 529–543 (1994).

    Google Scholar 

  39. 39

    Bohm, E. et al. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature 517, 73–76 (2015).

    Google Scholar 

  40. 40

    Ferrari, R. et al. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753–8758 (2014).

    Google Scholar 

  41. 41

    Ninnemann, U. S. & Charles, C. D. Changes in the mode of Southern Ocean circulation over the last glacial cycle revealed by foraminiferal stable isotopic variability. Earth Planet. Sci. Lett. 201, 383–396 (2002).

    Google Scholar 

  42. 42

    Lynch-Stieglitz, J., Stocker, T. F., Broecker, W. & Fairbanks, R. G. The influence of air-sea exchange on the isotopic composition of oceanic carbon: observations and modeling. Glob. Biogeochem. Cycles 9, 653–665 (1995).

    Google Scholar 

  43. 43

    Williams, R. G. & Follows, M. J. Ocean Dynamics and the Carbon Cycle: Principals and Mechanisms (Cambridge Univ. Press, 2011).

    Google Scholar 

  44. 44

    Menviel, L., England, M. H., Meissner, K. J., Mouchet, A. & Yu, J. Atlantic-Pacific seesaw and its role in outgassing CO2 during Heinrich events. Paleoceanography 29, 58–70 (2014).

    Google Scholar 

  45. 45

    Menviel, L., Joos, F. & Ritz, S. P. Simulating atmospheric CO2, 13C and the marine carbon cycle during the Last Glacial/Interglacial cycle: possible role for a deepening of the mean remineralization depth and an increase in the oceanic nutrient inventory. Quat. Sci. Rev. 56, 46–68 (2012).

    Google Scholar 

  46. 46

    Menviel, L., Spence, P. & England, M. H. Contribution of enhanced Antarctic Bottom Water formation to Antarctic warm events and millennial-scale atmospheric CO2 increase. Earth Planet. Sci. Lett. 413, 37–50 (2015).

    Google Scholar 

  47. 47

    Schlitzer, R. Ocean Data View (2006); https://odv.awi.de

  48. 48

    Weaver, A. J. et al. The UVic earth system climate model: model description, climatology, and applications to past, present and future climates. Atmos.-Ocean 39, 361–428 (2001).

    Google Scholar 

  49. 49

    Menviel, L., Timmermann, A., Mouchet, A. & Timm, O. Meridional reorganizations of marine and terrestrial productivity during Heinrich events. Paleoceanography 23, A1203 (2008).

    Google Scholar 

  50. 50

    Meissner, K. J., Schmittner, A., Weaver, A. J. & Adkins, J. The ventilation of the North Atlantic Ocean during the Last Glacial Maximum: a comparison between simulated and observed radiocarbon ages. Paleoceanography 18, 1023 (2003).

    Google Scholar 

  51. 51

    Yu, J. M., Elderfield, H., Greaves, M. & Day, J. Preferential dissolution of benthic foraminiferal calcite during laboratory reductive cleaning. Geochem. Geophys. Geosyst. 8, Q06016 (2007).

    Google Scholar 

  52. 52

    Barker, S., Greaves, M. & Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosyst. 4, 8407 (2003).

    Google Scholar 

  53. 53

    Yu, J. M., Day, J., Greaves, M. & Elderfield, H. Determination of multiple element/calcium ratios in foraminiferal calcite by quadrupole ICP-MS. Geochem. Geophys. Geosyst. 6, Q08P01 (2005).

    Google Scholar 

  54. 54

    Boyle, E. & Keigwin, L. D. Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years: changes in deep ocean circulation and chemical inventories. Earth Planet. Sci. Lett. 76, 135–150 (1985).

    Google Scholar 

  55. 55

    Yu, J., Anderson, R. F. & Rohling, E. J. Deep ocean carbonate chemistry and glacial–interglacial atmospheric CO2 changes. Oceanography 27, 16–25 (2014).

    Google Scholar 

  56. 56

    Brown, R. E., Anderson, L. D., Thomas, E. & Zachos, J. C. A core-top calibration of B/Ca in the benthic foraminifers Nuttallides umbonifera and Oridorsalis umbonatus: a proxy for Cenozoic bottom water carbonate saturation. Earth Planet. Sci. Lett. 310, 360–368 (2011).

    Google Scholar 

  57. 57

    Pelletier, G., Lewis, E. & Wallace, D. A Calculator for the CO2 System in Seawater for Microsoft Excel/VBA (Washington State Department of Ecology, Olympia, WA, Brookhaven National Laboratory, Upton, NY, 2005).

    Google Scholar 

  58. 58

    Rohling, E. J. et al. Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature 508, 477–482 (2014).

    Google Scholar 

Download references

Acknowledgements

We thank J. McManus, D. Sigman and B. Anderson for insightful and constructive discussions and comments, and L. Kinsley and L. Rodriguez-Sanz for laboratory assistance. This work is supported by ARC Discovery Project (DP140101393) and Future Fellowship (FT140100993) to J.Y., CAS/SAFEA International Partnership Program for Creative Research Teams to J.Y. and Z.D.J., DECRA (DE150100107) to L.M., UK NERC grant NE/J008133/1 to S.B., and by Australian Laureate Fellowship (FL120100050) to E.J.R. Core materials were kindly provided by LDEO (N. Anest), NOC (G. Rothwell), GEREGE (N. Thouveny), and WHOI (E. Roosen/D. Oppo) core repositories. Model experiments were performed on a computational cluster owned by the Faculty of Science of the University of New South Wales as well as on a cluster from the NCI National Facility at the Australian National University.

Author information

Affiliations

Authors

Contributions

J.Y. designed and performed the research and wrote the paper; L.M. carried out modelling; Z.D.J./F.Z. picked foram shells; D.J.R.T./S.B. and Y.D./P.C. generated data for MD95-2039 and EW9209-2JPC/RC16-59, respectively; G.M./E.J.R. conducted MC simulation; all authors contributed to improving the manuscript.

Corresponding author

Correspondence to J. Yu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1202 kb)

Supplementary Information

Supplementary Information (XLS 126 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Menviel, L., Jin, Z. et al. Sequestration of carbon in the deep Atlantic during the last glaciation. Nature Geosci 9, 319–324 (2016). https://doi.org/10.1038/ngeo2657

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing