Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Porphyry copper enrichment linked to excess aluminium in plagioclase

Abstract

Porphyry copper deposits provide around 75%, 50% and 20% of world copper, molybdenum and gold, respectively1. The deposits are mainly centred on calc-alkaline porphyry magmatic systems2,3 in subduction zone settings1. Although calc-alkaline magmas are relatively common, large porphyry copper deposits are extremely rare and increasingly difficult to discover. Here, we compile existing geochemical data for magmatic plagioclase, a dominant mineral in calc-alkaline rocks, from fertile (porphyry-associated) and barren magmatic systems worldwide, barren examples having no associated porphyry deposit. We show that plagioclase from fertile systems is distinct in containing ‘excess’ aluminium. This signature is clearly demonstrated in a case study carried out on plagioclase from the fertile La Paloma and Los Sulfatos copper porphyry systems in Chile. Further, the presence of concentric zones of high excess aluminium suggests its incorporation as a result of magmatic processes. As excess aluminium has been linked to high melt water contents, the concentric zones may record injections of hydrous fluid or fluid-rich melts into the sub-porphyry magma chamber. We propose that excess aluminium may exclude copper from plagioclase, so enriching the remaining melts. Furthermore, this chemical signature can be used as an exploration indicator for copper porphyry deposits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geochemical data for plagioclase.
Figure 2: Geochemical variations within plagioclase phenocrysts.
Figure 3: Section through La Paloma and Los Sulfatos breccia-dominated porphyry systems.

Similar content being viewed by others

References

  1. Sillitoe, R. H. Porphyry copper systems. Econ. Geol. 105, 3–41 (2010).

    Article  Google Scholar 

  2. Richards, J. P. High Sr/Y arc magmas and porphyry Cu ± Mo ± Au deposits: just add water. Econ. Geol. 106, 1075–1081 (2011).

    Article  Google Scholar 

  3. Loucks, R. R. Distinctive composition of copper-ore-forming arc magmas. Aust. J. Earth. Sci. 61, 5–16 (2014).

    Article  Google Scholar 

  4. Grove, T. L., Baker, M. B. & Kinzler, R. J. Coupled CaAl–NaSi diffusion in plagioclase feldspar: experiments and applications to cooling rate speedometry. Geochim. Cosmochim. Acta 48, 2113–2121 (1984).

    Article  Google Scholar 

  5. Blundy, J. D. & Shimizu, N. Trace element evidence for plagioclase recycling in calc-alkaline magmas. Earth Planet. Sci. Lett. 102, 178–197 (1991).

    Article  Google Scholar 

  6. Irarrazaval, V. et al. in The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries (eds Goldfarb, R. J., Marsh, E. E. & Monecke, T.) Vol. 15 253–269 (Society of Economic Geologists, 2010).

    Google Scholar 

  7. Kyono, A. & Kimata, M. Refinement of the crystal structure of a synthetic non-stoichiometric Rb-feldspar. Mineral. Mag. 65, 523–531 (2001).

    Article  Google Scholar 

  8. Kimata, M. et al. Anorthite megacrysts from island arc basalts. Mineral. Mag. 59, 1–14 (1995).

    Article  Google Scholar 

  9. Cannell, J. El Teniente Porphyry Copper Molybdenum Deposit, Central Chile PhD thesis, Univ. Tasmania (2004).

  10. Vry, V. H., Wilkinson, J. J., Seguel, J. & Millán, J. Multistage intrusion, brecciation, and veining at El Teniente, Chile: evolution of a nested porphyry system. Econ. Geol. 105, 119–153 (2010).

    Article  Google Scholar 

  11. Sisson, T. W. & Grove, T. L. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib. Mineral. Petrol. 113, 143–166 (1993).

    Article  Google Scholar 

  12. Ewart, A. & Griffin, W. L. Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chem. Geol. 117, 251–284 (1994).

    Article  Google Scholar 

  13. Chiaradia, M. Copper enrichment in arc magmas controlled by overriding plate thickness. Nature Geosci. 7, 43–46 (2014).

    Article  Google Scholar 

  14. Richards, J. P. The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny. Lithos 233, 27–45 (2015).

    Article  Google Scholar 

  15. Dilles, J. H. Petrology of the Yerington Batholith, Nevada: evidence for evolution of porphyry copper ore fluids. Econ. Geol. 82, 1750–1789 (1987).

    Article  Google Scholar 

  16. Ewart, A., Bryan, W. B. & Gill, J. B. Mineralogy and geochemistry of the Younger Volcanic Islands of Tonga, S. W. Pacific. J. Petrol. 14, 429–465 (1973).

    Article  Google Scholar 

  17. Renner, L. C., Hartmann, L. A., Wildner, W., Massonne, H.-J. & Theye, T. A micro-analytical approach to partition coefficients in plagioclase and clinopyroxene of basaltic sills in Serra Geral Formation, Paraná Basin, Brazil. Rev. Bras. Geocienc. 41, 263–289 (2011).

    Article  Google Scholar 

  18. Wilkinson, J. J. Triggers for the formation of porphyry ore deposits in magmatic arcs. Nature Geosci. 6, 917–925 (2013).

    Article  Google Scholar 

  19. Zellmer, G. F., Sparks, R. S. J., Hawkesworth, C. J. & Wiedenbeck, M. Magma emplacement and remobilization timescales beneath Montserrat: insights from Sr and Ba zonation in plagioclase phenocrysts. J. Petrol. 44, 1413–1431 (2003).

    Article  Google Scholar 

  20. Richards, J. P. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol. Rev. 40, 1–26 (2011).

    Article  Google Scholar 

  21. Piquer, J., Skarmeta, J. & Cooke, D. R. Structural evolution of the Rio Blanco-Los Bronces District, Andes of Central Chile: controls on stratigraphy, magmatism and mineralization. Econ. Geol. 110, 1995–2023 (2015).

    Article  Google Scholar 

  22. Stewart, D. B., Walker, G. W., Wright, T. L. & Fahey, J. J. Physical properties of calcic labradorite from Lake County, Oregon. Am. Mineral. 51, 177–197 (1966).

    Google Scholar 

  23. Straub, S. M. in Dynamics of Crustal Magma Transfer, Storage and Differentiation (eds Annen, C. & Zellmer, G. F.) 261–283 (Special Publication 304, Geological Society of London, 2008).

    Google Scholar 

Download references

Acknowledgements

The project would not have been possible without the financial and logistical support of Anglo American, including former and current staff: J. Coppard, V. Irarrazaval, M. Buchanan, E. Liebmann, R. Mattos Pino, E. Centino, J. Andronico, R. Mauricio, D. Fernando and J. Zamorano. J. Spratt (Natural History Museum, London) and S. Pendray (University of Exeter) are thanked for EPMA support and thin section preparation, respectively. K. Cashman (Bristol University), S. Hesselbo, J. Pickles and S. Broom-Fendley (University of Exeter), and reviewer J. Richards (University of Alberta), are gratefully acknowledged for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

B.J.W. and R.J.H. wrote the manuscript. A.M. carried out the LA-ICP-MS analyses of the plagioclase at the LODE Facility, Natural History Museum (NHM), London.

Corresponding author

Correspondence to B. J. Williamson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 849 kb)

Supplementary Information

Supplementary Information (XLSX 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williamson, B., Herrington, R. & Morris, A. Porphyry copper enrichment linked to excess aluminium in plagioclase. Nature Geosci 9, 237–241 (2016). https://doi.org/10.1038/ngeo2651

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2651

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing