Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High solar cycle spectral variations inconsistent with stratospheric ozone observations

Abstract

Solar variability can influence surface climate, for example by affecting the mid-to-high-latitude surface pressure gradient associated with the North Atlantic Oscillation1. One key mechanism behind such an influence is the absorption of solar ultraviolet (UV) radiation by ozone in the tropical stratosphere, a process that modifies temperature and wind patterns and hence wave propagation and atmospheric circulation2,3,4,5. The amplitude of UV variability is uncertain, yet it directly affects the magnitude of the climate response6: observations from the SOlar Radiation and Climate Experiment (SORCE) satellite7 show broadband changes up to three times larger than previous measurements8,9. Here we present estimates of the stratospheric ozone variability during the solar cycle. Specifically, we estimate the photolytic response of stratospheric ozone to changes in spectral solar irradiance by calculating the difference between a reference chemistry–climate model simulation of ozone variability driven only by transport (with no changes in solar irradiance) and observations of ozone concentrations. Subtracting the reference from simulations with time-varying irradiance, we can evaluate different data sets of measured and modelled spectral irradiance. We find that at altitudes above pressure levels of 5 hPa, the ozone response to solar variability simulated using the SORCE spectral solar irradiance data are inconsistent with the observations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of photolytic solar cycle ozone response.
Figure 2: Solar irradiance and ozone time series.
Figure 3: Ozone response from multi-linear regression between 1991 and 2012.
Figure 4: Solar cycle maximum-to-minimum ozone response from linear fitting.

Similar content being viewed by others

References

  1. Gray, L. J. et al. A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns. J. Geophys. Res. 118, 13405–13420 (2013).

    Google Scholar 

  2. Haigh, J. The impact of solar variability on climate. Science 272, 981–984 (1996).

    Article  Google Scholar 

  3. Kodera, K. & Kuroda, Y. Dynamical response to the solar cycle. J. Geophys. Res. 107, 4749 (2002).

    Article  Google Scholar 

  4. Simpson, I. R., Blackburn, J. D. & Haigh, M. The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J. Atmos. Sci. 66, 1347–1365 (2009).

    Article  Google Scholar 

  5. Gray, L. J. et al. Solar influences on climate. Rev. Geophys. 48, 4001 (2010).

    Article  Google Scholar 

  6. Ineson, S. et al. Solar forcing of winter climate variability in the Northern Hemisphere. Nature Geosci. 4, 753–757 (2011).

    Article  Google Scholar 

  7. Rottman, G. The SORCE mission. Sol. Phys. 230, 7–25 (2005).

    Article  Google Scholar 

  8. Ball, W. T., Krivova, N. A., Unruh, Y. C., Haigh, J. D. & Solanki, S. K. A new SATIRE-S spectral solar irradiance reconstruction for solar cycles 21–23 and its implications for stratospheric ozone. J. Atmos. Sci. 71, 4086–4101 (2014).

    Article  Google Scholar 

  9. Ball, W. T., Mortlock, D. J., Egerton, J. S. & Haigh, J. D. Assessing the relationship between spectral solar irradiance and stratospheric ozone using Bayesian inference. J. Space Weath. Space Clim. 4, A25 (2014).

    Article  Google Scholar 

  10. Ermolli, I. et al. Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys. 13, 3945–3977 (2013).

    Article  Google Scholar 

  11. McClintock, W. E., Rottman, G. J. & Woods, T. N. SOLar-STellar Irradiance Comparison Experiment II (SOLSTICE II): instrument concept and design. Sol. Phys. 230, 225–258 (2005).

    Article  Google Scholar 

  12. Harder, J. W., Fontenla, J. M., Pilewskie, P., Richard, E. C. & Woods, T. N. Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett. 36, 7801 (2009).

    Article  Google Scholar 

  13. Ball, W. T., Unruh, Y. C., Krivova, N. A., Solanki, S. & Harder, J. W. Solar irradiance variability: a six-year comparison between SORCE observations and the SATIRE model. Astron. Astrophys. 530, A71 (2011).

    Article  Google Scholar 

  14. Lean, J. L. et al. How does the Sun’s spectrum vary? J. Clim. 25, 2555–2560 (2012).

    Article  Google Scholar 

  15. Fröhlich, C. Evidence of a long-term trend in total solar irradiance. Astron. Astrophys. 501, L27–L30 (2009).

    Article  Google Scholar 

  16. Lockwood, M. Reconstruction and prediction of variations in the open solar magnetic flux and interplanetary conditions. Living Rev. Sol. Phys. 10, 4 (2013).

    Article  Google Scholar 

  17. Usoskin, I. G., Solanki, S. K. & Kovaltsov, G. A. in IAU Symposium (eds Mandrini, C. H. & Webb, D. F.) Vol. 286, 372–382 (IAU Symposium, 2012).

    Google Scholar 

  18. Fontenla, J. M., Curdt, W., Haberreiter, M., Harder, J. & Tian, H. Semiempirical models of the solar atmosphere. III. Set of non-LTE models for far-ultraviolet/extreme-ultraviolet irradiance computation. Astrophys. J. 707, 482–502 (2009).

    Article  Google Scholar 

  19. Yeo, K. L., Krivova, N. A., Solanki, S. K. & Glassmeier, K. H. Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI, and SDO/HMI observations. Astron. Astrophys. 570, A85 (2014).

    Article  Google Scholar 

  20. Austin, J. et al. Coupled chemistry climate model simulations of the solar cycle in ozone and temperature. J. Geophys. Res. 113, 11306 (2008).

    Article  Google Scholar 

  21. Haigh, J. D., Winning, A. R., Toumi, R. & Harder, J. W. An influence of solar spectral variations on radiative forcing of climate. Nature 467, 696–699 (2010).

    Article  Google Scholar 

  22. Merkel, A. W. et al. The impact of solar spectral irradiance variability on middle atmospheric ozone. Geophys. Res. Lett. 38, 13802 (2011).

    Article  Google Scholar 

  23. Hood, L. L. et al. Solar signals in CMIP-5 simulations: the ozone response. Q. J. R. Meteorol. Soc. 141, 2670–2689 (2015).

    Article  Google Scholar 

  24. Chiodo, G., Marsh, D. R., Garcia-Herrera, R., Calvo, N. & García, J. A. On the detection of the solar signal in the tropical stratosphere. Atmos. Chem. Phys. 14, 5251–5269 (2014).

    Article  Google Scholar 

  25. Abalos, M., Legras, B., Ploeger, F. & Randel, W. J. Evaluating the advective Brewer–Dobson circulation in three reanalyses for the period 1979–2012. J. Geophys. Res. 120, 7534–7554 (2015).

    Google Scholar 

  26. Zubov, V., Rozanov, E., Egorova, T., Karol, I. & Schmutz, W. Role of external factors in the evolution of the ozone layer and stratospheric circulation in 21st century. Atmos. Chem. Phys. 13, 4697–4706 (2013).

    Article  Google Scholar 

  27. Tummon, F. et al. Intercomparison of vertically resolved merged satellite ozone data sets: interannual variability and long-term trends. Atmos. Chem. Phys. Discuss. 14, 25687–25745 (2014).

    Article  Google Scholar 

  28. Froidevaux, L. et al. Global OZone Chemistry And Related Datasets for the Stratosphere (GOZCARDS): methodology and sample results with a focus on HCl, H2O, and O3 . Atmos. Chem. Phys. Discuss. 15, 5849–5957 (2015).

    Article  Google Scholar 

  29. McPeters, R. D., Bhartia, P. K., Haffner, D., Labow, G. J. & Flynn, L. The version 8.6 SBUV ozone data record: an overview. J. Geophys. Res. 118, 8032–8039 (2013).

    Google Scholar 

  30. Ineson, S. et al. Regional climate impacts of a possible future grand solar minimum. Nature Commun. 6, 7535 (2015).

    Article  Google Scholar 

  31. Floyd, L. E., Cook, J. W., Herring, L. C. & Crane, P. C. SUSIM’S 11-year observational record of the solar UV irradiance. Adv. Space Res. 31, 2111–2120 (2003).

    Article  Google Scholar 

  32. Yeo, K. L. et al. UV solar irradiance in observations and the NRLSSI and SATIRE-S models. J. Geophys. Res. 120, 6055–6070 (2015).

    Article  Google Scholar 

  33. Lean, J., Rottman, G., Harder, J. & Kopp, G. SORCE contributions to new understanding of global change and solar variability. J. Sol. Phys. 230, 27–53 (2005).

    Article  Google Scholar 

  34. Morrill, J. S., Floyd, L. & McMullin, D. Comparison of solar UV spectral irradiance from SUSIM and SORCE. Sol. Phys. 289, 3641–3661 (2014).

    Article  Google Scholar 

  35. Stenke, A. et al. The SOCOL version 3.0 chemistry–climate model: description, evaluation, and implications from an advanced transport algorithm. Geosci. Model Dev. 6, 1407–1427 (2013).

    Article  Google Scholar 

  36. Eyring, V. et al. Overview of IGAC/SPARC chemistry–climate model initiative (CCMI) community simulations in support of upcoming ozone and climate assessments. SPARC Newsl. 40, 48–66 (2013).

    Google Scholar 

  37. Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  38. Kuchar, A., Sacha, P., Miksovsky, J. & Pisoft, P. The 11-year solar cycle in current reanalyses: a (non)linear attribution study of the middle atmosphere. Atmos. Chem. Phys. 15, 6879–6895 (2015).

    Article  Google Scholar 

  39. Sato, M., Hansen, J. E., McCormick, M. P. & Pollack, J. B. Stratospheric aerosol optical depths, 1850–1990. J. Geophys. Res. 98, 22987–22994 (1993).

    Article  Google Scholar 

  40. The Climate Data Guide: Multivariate ENSO Index (NCAR, 2013); https://climatedataguide.ucar.edu/climate-data/multivariate-enso-index.

  41. Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (CRC Press, 1994).

    Google Scholar 

Download references

Acknowledgements

W.T.B. was funded by the SNSF projects 149182 (SILA) and 163206 (SIMA). We thank A. Stenke and A. Coulon for their advice, comments and help with the model nudging. We thank M. Snow for his comments on SORCE/SOLSTICE. We thank the GOZCARDS, SWOOSH and SBUV teams for their ozone products. E.V.R. was partially supported by the Swiss National Science Foundation under grant agreement CRSII2-147659 (FUPSOL II). T.S. was funded by SNSF project 153302.

Author information

Authors and Affiliations

Authors

Contributions

W.T.B. prepared the solar data, performed the model experiments, carried out the linear analysis and interpretation of results. W.T.B. and J.D.H. wrote the paper. W.T.B., T.S. and E.V.R. designed and set up the model simulations, F.T. provided the ozone data sets and advice on their use, A.V.S. prepared the CCM model nudging and A.K. performed the MLR analysis. J.D.H., E.V.R. and W.S. provided expert advice and discussion on the results.

Corresponding author

Correspondence to W. T. Ball.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 693 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ball, W., Haigh, J., Rozanov, E. et al. High solar cycle spectral variations inconsistent with stratospheric ozone observations. Nature Geosci 9, 206–209 (2016). https://doi.org/10.1038/ngeo2640

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2640

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing