Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake

A Corrigendum to this article was published on 01 September 2016

This article has been updated

Abstract

The Himalayan mountain range has been the locus of some of the largest continental earthquakes, including the 2015 magnitude 7.8 Gorkha earthquake. Competing hypotheses suggest that Himalayan topography is sustained and plate convergence is accommodated either predominantly on the main plate boundary fault, or more broadly across multiple smaller thrust faults. Here we use geodetic measurements of surface displacement to show that the Gorkha earthquake ruptured the Main Himalayan Thrust fault. The earthquake generated about 1 m of uplift in the Kathmandu Basin, yet caused the high Himalaya farther north to subside by about 0.6 m. We use the geodetic data, combined with geologic, geomorphological and geophysical analyses, to constrain the geometry of the Main Himalayan Thrust in the Kathmandu area. Structural analyses together with interseismic and coseismic displacements are best explained by a steep, shallow thrust fault flattening at depth between 5 and 15 km and connecting to a mid-crustal, steeper thrust. We suggest that present-day convergence across the Himalaya is mostly accommodated by this fault—no significant motion on smaller thrust faults is required. Furthermore, given that the Gorkha earthquake caused the high Himalayan mountains to subside and that our fault geometry explains measured interseismic displacements, we propose that growth of Himalayan topography may largely occur during the ongoing post-seismic phase.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Comparison of earthquake slip determined from surface geodetic displacements with long-term interseismic coupling.
Figure 2: Deformation patterns observed in Sentinel-1 interferograms for the 2015 Gorkha mainshock and comparison with long-term levelling data.
Figure 3: MHT geometry exploration along a cross-section (N18°).
Figure 4: Three-dimensional block diagram of the geometry proposed for the MHT.
Figure 5: Geologic cross-section incorporating the Main Himalayan Thrust geometry, and schematic cartoon of the 2015 rupture area relative to previous earthquakes.

Change history

  • 18 August 2016

    In the version of this Article originally published, the interseismic coupling map was incorrectly plotted in Figure 1. This has been corrected in the online versions of the paper.

References

  1. 1

    Avouac, J.-P., Meng, L., Wei, S., Wang, T. & Ampuero, J.-P. Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nature Geosci. 8, 708–711 (2015).

    Article  Google Scholar 

  2. 2

    Galetzka, J. et al. Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake, Nepal. Science 349, 1091–1095 (2015).

    Article  Google Scholar 

  3. 3

    Lindsey, E. et al. Line of sight displacement from ALOS-2 interferometry: Mw 7.8 Gorkha Earthquake and Mw 7.3 aftershock. Geophys. Res. Lett. 42, 6655–6661 (2015).

    Article  Google Scholar 

  4. 4

    Wang, K. & Fialko, Y. Slip model of the 2015 Mw 7.8 Gorkha (Nepal) earthquake from inversions of ALOS-2 and GPS data. Geophys. Res. Lett. 42, 7452–7458 (2015).

    Article  Google Scholar 

  5. 5

    Sapkota, S. N. et al. Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nature Geosci. 6, 71–76 (2013).

    Article  Google Scholar 

  6. 6

    Avouac, J.-P., Ayoub, F., Leprince, S., Konca, O. & Helmberger, D. V. The 2005, Mw 7.6 Kashmir earthquake: sub-pixel correlation of ASTER images and seismic waveforms analysis. Earth Planet. Sci. Lett. 249, 514–528 (2006).

    Article  Google Scholar 

  7. 7

    Ambraseys, N. N. & Douglas, J. Magnitude calibration of north Indian earthquakes. Geophys. J. Int. 159, 165–206 (2004).

    Article  Google Scholar 

  8. 8

    Bilham, R. Earthquakes in India and the Himalaya: tectonics, geodesy and history. Annu. Geophys. 47, 839–858 (2004).

    Google Scholar 

  9. 9

    Chen, W.-P. & Molnar, P. Seismic moments of major earthquakes and the average rate of slip in central Asia. J. Geophys. Res. 82, 2945–2970 (1977).

    Article  Google Scholar 

  10. 10

    Bilham, R., Gaur, V. K. & Molnar, P. EARTHQUAKES: Himalayan seismic hazard. Science 293, 1442–1444 (2001).

    Article  Google Scholar 

  11. 11

    Ambraseys, N. & Jackson, D. A note on early earthquakes in northern India and southern Tibet. Curr. Sci. 84, 570–582 (2003).

    Google Scholar 

  12. 12

    Ader, T. et al. Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: implications for seismic hazard. J. Geophys. Res. 117, B04403 (2012).

    Article  Google Scholar 

  13. 13

    Searle, M. P. et al. The closing of Tethys and the tectonics of the Himalaya. Geol. Soc. Am. Bull. 98, 678–701 (1987).

    Article  Google Scholar 

  14. 14

    Hauck, M. L., Nelson, K. D., Brown, L. D., Zhao, W. & Ross, A. R. Crustal structure of the Himalayan orogen at 90 east longitude from Project INDEPTH deep reflection profiles. Tectonics 17, 481–500 (1998).

    Article  Google Scholar 

  15. 15

    Nábělek, J. et al. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science 325, 1371–1374 (2009).

    Article  Google Scholar 

  16. 16

    Lavé, J. & Avouac, J. P. Fluvial incision and tectonic uplift across the Himalayas of central Nepal. J. Geophys. Res. 106, 26561–26591 (2001).

    Article  Google Scholar 

  17. 17

    Pandey, M. R., Tandukar, R. P., Avouac, J. P., Lave, J. & Massot, J. P. Interseismic strain accumulation on the Himalayan Crustal Ramp (Nepal). Geophys. Res. Lett. 22, 751–754 (1995).

    Article  Google Scholar 

  18. 18

    Bollinger, L. et al. Thermal structure and exhumation history of the Lesser Himalaya in central Nepal. Tectonics 23, TC5015 (2004).

    Article  Google Scholar 

  19. 19

    Herman, F. et al. Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography. J. Geophys. Res. 115, BO6407 (2010).

    Article  Google Scholar 

  20. 20

    Wobus, C., Heimsath, A., Whipple, K. & Hodges, K. Active out-of-sequence thrust faulting in the central Nepalese Himalaya. Nature 434, 1008–1011 (2005).

    Article  Google Scholar 

  21. 21

    Wobus, C. W., Hodges, K. V. & Whipple, K. X. Has focused denudation sustained active thrusting at the Himalayan topographic front? Geology 31, 861–864 (2003).

    Article  Google Scholar 

  22. 22

    Lavé, J. & Avouac, J. P. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. J. Geophys. Res. 105, 5735–5770 (2000).

    Article  Google Scholar 

  23. 23

    Lemonnier, C. et al. Electrical structure of the Himalaya of central Nepal: high conductivity around the mid-crustal ramp along the MHT. Geophys. Res. Lett. 26, 3261–3264 (1999).

    Article  Google Scholar 

  24. 24

    Nelson, K. D. et al. Partially molten middle crust beneath Southern Tibet: synthesis of Project INDEPTH results. Science 274, 1684–1688 (1996).

    Article  Google Scholar 

  25. 25

    Stevens, V. & Avouac, J.-P. Coupling on the Main Himalayan Thrust. Geophys. Res. Lett. 42, 5828–5837 (2015).

    Article  Google Scholar 

  26. 26

    Robinson, D. M. et al. Kinematic model for the Main Central thrust in Nepal. Geology 31, 359–362 (2003).

    Article  Google Scholar 

  27. 27

    Bollinger, L., Henry, P. & Avouac, J. P. Mountain building in the Nepal Himalaya: thermal and kinematic model. Earth Planet. Sci. Lett. 244, 58–71 (2006).

    Article  Google Scholar 

  28. 28

    Kohn, M. J., Wieland, M. S., Parkinson, C. D. & Upreti, B. N. Miocene faulting at plate tectonic velocity in the Himalaya of central Nepal. Earth Planet. Sci. Lett. 228, 299–310 (2004).

    Article  Google Scholar 

  29. 29

    Chlieh, M., Avouac, J. P., Sieh, K., Natawidjaja, D. H. & Galetzka, J. Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements. J. Geophys. Res. 113, B05305 (2008).

    Article  Google Scholar 

  30. 30

    Loveless, J. P. & Meade, B. J. Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 M W = 9.0 Tohoku-oki earthquake. J. Geophys. Res. 38, L17306 (2011).

    Google Scholar 

  31. 31

    Jolivet, R., Simons, M., Agram, P. S., Duputel, Z. & Shen, Z.-K. Aseismic slip and seismogenic coupling along the central San Andreas Fault. Geophys. Res. Lett. 42, 297–306 (2015).

    Article  Google Scholar 

  32. 32

    Elliott, J. R., Copley, A. C., Holley, R., Scharer, K. & Parsons, B. The 2011 Mw 7.1 Van (Eastern Turkey) earthquake. J. Geophys. Res. 118, 1619–1637 (2013).

    Article  Google Scholar 

  33. 33

    Elliott, J. R. et al. Depth segmentation of the seismogenic continental crust: the 2008 and 2009 Qaidam earthquakes. Geophys. Res. Lett. 38, L06305 (2011).

    Article  Google Scholar 

  34. 34

    Jackson, M. & Bilham, R. Constraints on Himalayan deformation inferred from vertical velocity fields in Nepal and Tibet. J. Geophys. Res. 99, 13897–13912 (1994).

    Article  Google Scholar 

  35. 35

    Grandin, R. et al. Long-term growth of the Himalaya inferred from interseismic InSAR measurement. Geology 40, 1059–1062 (2012).

    Article  Google Scholar 

  36. 36

    Wessel, P. & Smith, W. H. F. New, improved version of generic mapping tools released. EOS Trans. AGU 79, 579 (1998).

    Article  Google Scholar 

  37. 37

    Taylor, M. & Yin, A. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism. Geosphere 5, 199–214 (2009).

    Article  Google Scholar 

  38. 38

    Ekström, G., Nettles, M. & Dziewoński, A. M. The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 200, 1–9 (2012).

    Article  Google Scholar 

  39. 39

    Sansosti, E., Berardino, P., Manunta, M., Serafino, F. & Fornaro, G. Geometrical SAR Image Registration. IEEE Trans. Geosci. Remote Sensing 44, 2861–2870 (2006).

    Article  Google Scholar 

  40. 40

    Gonzalez, P. FRINGE 2015 Workshop (ESA, 2015).

    Google Scholar 

  41. 41

    Leprince, S., Barbot, S., Ayoub, F. & Avouac, J. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci. Remote Sensing 45, 1529–1558 (2007).

    Article  Google Scholar 

  42. 42

    Leprince, S., Ayoub, F., Klinger, Y. & Avouac, J.-P. Geoscience and Remote Sensing Symposium, 2007 1943–1946 (IEEE, 2007).

    Book  Google Scholar 

  43. 43

    Leprince, S., Muse, P. & Avouac, J. In-flight CCD distortion calibration for pushbroom satellites based on subpixel correlation. IEEE Trans. Geosci. Remote Sensing 46, 2675–2683 (2008).

    Article  Google Scholar 

  44. 44

    Ayoub, F., Leprince, S. & Avouac, J.-P. Co-registration and correlation of aerial photographs for ground deformation measurements. ISPRS J. Photogramm. Remote Sensing 64, 551–560 (2009).

    Article  Google Scholar 

  45. 45

    Zhu, L. & Rivera, L. A. A note on the dynamic and static displacements from a point source in multilayered media. Geophys. J. Int. 148, 619–627 (2002).

    Article  Google Scholar 

  46. 46

    Simons, M., Fialko, Y. & Rivera, L. Coseismic deformation from the 1999 Mw 7.1 Hector Mine, California, Earthquake as inferred from InSAR and GPS observations. Bull. Seismol. Soc. Am. 92, 1390–1402 (2002).

    Article  Google Scholar 

  47. 47

    Sudhaus, H. & Jónsson, S. Improved source modelling through combined use of InSAR and GPS under consideration of correlated data errors: application to the June 2000 Kleifarvatn earthquake, Iceland. Geophys. J. Int. 176, 389–404 (2009).

    Article  Google Scholar 

  48. 48

    Jolivet, R. et al. The 2013 Mw 7.7 Balochistan Earthquake: seismic potential of an accretionary wedge. Bull. Seismol. Soc. Am. 104, 1020–1030 (2014).

    Article  Google Scholar 

  49. 49

    Ortega Culaciati, F. H. Aseismic Deformation in Subduction Megathrusts: Central Andes and North–East Japan PhD thesis, California Institute of Technology (2013).

  50. 50

    Patil, A., Huard, D. & Fonnesbeck, C. J. PyMC: Bayesian stochastic modelling in Python. J. Stat. Softw. 35, 1–81 (2010).

    Google Scholar 

  51. 51

    Bilham, R., Bodin, P. & Jackson, M. Entertaining a great earthquake in Western Nepal: historic inactivity and geodetic tests for the present state of strain. J. Nepal Geol. Soc. 11, 73–78 (1995).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the UK Natural Environmental Research Council (NERC) through the Looking Inside the Continents (LiCS) project (NE/K011006/1), the Earthquake without Frontiers (EwF) project (EwF_NE/J02001X/1_1), and the Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics (COMET, GA/13/M/031, http://comet.nerc.ac.uk). The Sentinel-1A interferograms presented are a derived work of Copernicus data, subject to the ESA use and distribution conditions. R.J. is supported by the Marie Curie FP7 Initial Training Network iTECC (investigating Tectonic Erosion Climate Couplings). We are grateful to E. Lindsey and colleagues for making ALOS-2 displacements available at http://topex.ucsd.edu/nepal. We thank A. Copley, S. K. Ebmeier, P. England, A. Hooper, J. Jackson, B. Parsons, R. Walters and T. Wright for discussions. Most figures were made using the public domain Generic Mapping Tools36.

Author information

Affiliations

Authors

Contributions

The first two authors each contributed equally to the study. J.R.E. wrote the manuscript and processed Sentinel offset data. R.J. performed the fault modelling. P.J.G. processed the Sentinel interferograms. J.-P.A. conceived the research idea. J.H. processed the optical offset data. M.P.S. constructed the geologic cross-section. V.L.S. produced the interseismic coupling map. All authors took part in finalizing the manuscript.

Corresponding author

Correspondence to J. R. Elliott.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 21331 kb)

Supplementary Information

Supplementary Information (TXT 13 kb)

Supplementary Information

Supplementary Information (TXT 943 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elliott, J., Jolivet, R., González, P. et al. Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nature Geosci 9, 174–180 (2016). https://doi.org/10.1038/ngeo2623

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing