Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Links between tropical Pacific seasonal, interannual and orbital variability during the Holocene

Abstract

The El Niño/Southern Oscillation (ENSO) is the leading mode of interannual climate variability. However, it is unclear how ENSO has responded to external forcing, particularly orbitally induced changes in the amplitude of the seasonal cycle during the Holocene. Here we present a reconstruction of seasonal and interannual surface conditions in the tropical Pacific Ocean from a network of high-resolution coral and mollusc records that span discrete intervals of the Holocene. We identify several intervals of reduced variance in the 2 to 7 yr ENSO band that are not in phase with orbital changes in equatorial insolation, with a notable 64% reduction between 5,000 and 3,000 years ago. We compare the reconstructed ENSO variance and seasonal cycle with that simulated by nine climate models that include orbital forcing, and find that the models do not capture the timing or amplitude of ENSO variability, nor the mid-Holocene increase in seasonality seen in the observations; moreover, a simulated inverse relationship between the amplitude of the seasonal cycle and ENSO-related variance in sea surface temperatures is not found in our reconstructions. We conclude that the tropical Pacific climate is highly variable and subject to millennial scale quiescent periods. These periods harbour no simple link to orbital forcing, and are not adequately simulated by the current generation of models.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Location and ENSO sensitivity of proxy archives.
Figure 2: Distribution of seasonal and interannual variability in models and observations.
Figure 3: Link between interannual and seasonal variability in models and observations.

References

  1. Sarachik, E. S. & Cane, M. A. The El Niño-Southern Oscillation Phenomenon 336–384 (Cambridge Univ. Press, 2010).

    Google Scholar 

  2. Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geosci. 3, 391–397 (2010).

    Google Scholar 

  3. Schmidt, G. A. Enhancing the relevance of palaeoclimate model/data comparisons for assessments of future climate change. J. Quat. Sci. 25, 79–87 (2010).

    Google Scholar 

  4. Braconnot, P., Luan, Y., Brewer, S. & Zheng, W. Impact of Earth’s orbit and freshwater fluxes on Holocene climate mean seasonal cycle and ENSO characteristics. Clim. Dynam. 38, 1081–1092 (2012).

    Google Scholar 

  5. Tudhope, A. W. et al. Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle. Science 291, 1511–1517 (2001).

    Google Scholar 

  6. McGregor, H. V. & Gagan, M. K. Western Pacific coral δ18O records of anomalous Holocene variability in the El Niño-Southern Oscillation. Geophys. Res. Lett. 31, L11204 (2004).

    Google Scholar 

  7. Koutavas, A. & Joanides, S. El Niño-Southern Oscillation extrema in the Holocene and Last Glacial Maximum. Paleoceanography 27, PA4208 (2012).

    Google Scholar 

  8. Clement, A. C., Seager, R. & Cane, M. A. Suppression of El Niño during the mid-Holocene by changes in the Earth’s orbit. Paleoceanography 15, 731–737 (2000).

    Google Scholar 

  9. Liu, Z., Kutzbach, J. & Wu, L. Modeling climate shift of El Niño variability in the Holocene. Geophys. Res. Lett. 27, 2265–2268 (2000).

    Google Scholar 

  10. Zheng, W., Braconnot, P., Guilyardi, E., Merkel, U. & Yu, Y. ENSO at 6 ka and 21 ka from ocean–atmosphere coupled model simulations. Clim. Dynam. 30, 745–762 (2008).

    Google Scholar 

  11. Chiang, J. C. H., Fang, Y. & Chang, P. Pacific climate change and ENSO activity in the mid-Holocene. J. Clim. 22, 923–939 (2009).

    Google Scholar 

  12. An, S.-I. & Choi, J. Mid-Holocene tropical Pacific climate state, annual cycle, and ENSO in PMIP2 and PMIP3. Clim. Dynam. 43, 957–970 (2014).

    Google Scholar 

  13. Liu, Z. et al. Evolution and forcing mechanisms of El Niño over the past 21,000 years. Nature 515, 550–553 (2014).

    Google Scholar 

  14. Wang, X. L. The coupling of the annual cycle and ENSO over the tropical Pacific. J. Atmos. Sci. 51, 1115–1136 (1994).

    Google Scholar 

  15. Chang, P., Wang, B., Li, T. & Ji, L. Interactions between the seasonal cycle and the Southern Oscillation—frequency entrainment and chaos in a coupled ocean-atmosphere model. Geophys. Res. Lett. 21, 2817–2820 (1994).

    Google Scholar 

  16. Guilyardi, E. El Niño mean state seasonal cycle interactions in a multi-model ensemble. Clim. Dynam. 26, 329–348 (2006).

    Google Scholar 

  17. Timmermann, A., Lorenz, S. J., An, S.-I., Clement, A. & Xie, S.-P. The effect of orbital forcing on the mean climate and variability of the tropical Pacific. J. Clim. 20, 4147–4159 (2007).

    Google Scholar 

  18. An, S.-I. et al. The inverse effect of annual-mean state and annual-cycle changes on ENSO. J. Clim. 23, 1095–1110 (2010).

    Google Scholar 

  19. An, S.-I. & Choi, J. Inverse relationship between the equatorial eastern Pacific annual-cycle and ENSO amplitudes in a coupled general circulation model. Clim. Dynam. 40, 663–675 (2013).

    Google Scholar 

  20. Liu, Z. A simple model study of ENSO suppression by external periodic forcing. J. Clim. 15, 1088–1098 (2002).

    Google Scholar 

  21. Tziperman, E., Stone, L., Cane, M. A. & Jarosh, H. El Niño chaos: overlapping of resonances between the seasonal cycle and the Pacific ocean-atmosphere oscillator. Science 264, 72–74 (1994).

    Google Scholar 

  22. Jin, F.-F., Neelin, J. D. & Ghil, M. El Niño on the Devil’s staircase: annual subharmonic steps to chaos. Science 264, 70–72 (1994).

    Google Scholar 

  23. Stuecker, M. F., Timmermann, A., Jin, F.-F., McGregor, S. & Ren, H.-L. A combination mode of the annual cycle and the El Niño-Southern Oscillation. Nature Geosci. 6, 540–544 (2013).

    Google Scholar 

  24. McGregor, H. V. et al. A weak El Niño-Southern Oscillation with delayed seasonal growth around 4,300 years ago. Nature Geosci. 6, 949–953 (2013).

    Google Scholar 

  25. Cobb, K. M. et al. Highly variable El Niño-Southern Oscillation throughout the Holocene. Science 339, 67–70 (2013).

    Google Scholar 

  26. Carré, M. et al. Holocene history of ENSO variance and asymmetry in the eastern tropical Pacific. Science 345, 1045–1048 (2014).

    Google Scholar 

  27. Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nature Clim. Change 2, 417–424 (2012).

    Google Scholar 

  28. Cobb, K. M., Charles, C. D., Cheng, H. & Edwards, R. L. El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature 424, 271–276 (2003).

    Google Scholar 

  29. Duprey, N. et al. Early mid-Holocene SST variability and surface-ocean water balance in the southwest Pacific. Paleoceanography 27, PA4207 (2012).

    Google Scholar 

  30. Kilbourne, K. H., Quinn, T. M., Taylor, F. W., Delcroix, T. & Gouriou, Y. El Niño-Southern Oscillation-related salinity variations recorded in the skeletal geochemistry of a Porites coral from Espiritu Santo, Vanuatu. Paleoceanography 19, PA4002 (2004).

    Google Scholar 

  31. Woodroffe, C. D. & Gagan, M. K. Coral microatolls from the central Pacific record Late Holocene El Niño. Geophys. Res. Lett. 27, 1511–1514 (2000).

    Google Scholar 

  32. Woodroffe, C. D., Beech, M. R. & Gagan, M. K. Mid-late Holocene El Niño variability in the equatorial Pacific from coral microatolls. Geophys. Res. Lett. 30, 1358 (2003).

    Google Scholar 

  33. Evans, M., Fairbanks, R. & Rubenstone, J. A proxy index of ENSO teleconnections. Nature 394, 732–733 (1998).

    Google Scholar 

  34. McGregor, H. V., Fischer, M. J., Gagan, M. K., Fink, D. & Woodroffe, C. D. Environmental control of the oxygen isotope composition of Porites coral microatolls. Geochim. Cosmochim. Acta 75, 3930–3944 (2011).

    Google Scholar 

  35. Carré, M., Sachs, J. P., Schauer, A. J., Rodríguez, W. E. & Ramos, F. C. Reconstructing El Niño-Southern Oscillation activity and ocean temperature seasonality from short-lived marine mollusk shells from Peru. Palaeogeogr. Palaeoclimatol. Palaeoecol. 371, 45–53 (2013).

    Google Scholar 

  36. Driscoll, R. et al. ENSO reconstructions over the past 60 ka using giant clams (Tridacna sp.) from Papua New Guinea. Geophys. Res. Lett. 41, 6819–6825 (2014).

    Google Scholar 

  37. Welsh, K., Elliot, M., Tudhope, A., Ayling, B. & Chappell, J. Giant bivalves (Tridacna gigas) as recorders of ENSO variability. Earth Planet. Sci. Lett. 307, 266–270 (2011).

    Google Scholar 

  38. McGregor, S., Timmermann, A., England, M. H., Elison Timm, O. & Wittenberg, A. T. Inferred changes in El Niño-Southern Oscillation variance over the past six centuries. Clim. Past 9, 2269–2284 (2013).

    Google Scholar 

  39. Thompson, D. M., Ault, T. R., Evans, M. N., Cole, J. E. & Emile-Geay, J. Comparison of observed and simulated tropical climate trends using a forward model of coral δ18O. Geophys. Res. Lett. 38, L14706 (2011).

    Google Scholar 

  40. Dee, S. G. et al. PRYSM: an open-source framework for proxy system modeling, with applications to oxygen-isotope systems. J. Adv. Mod. Earth Syst. 7, 1220–1247 (2015).

    Google Scholar 

  41. Wittenberg, A. T. Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett. 36, L12702 (2009).

    Google Scholar 

  42. Russon, T., Tudhope, A. W., Hegerl, G. C., Schurer, A. & Collins, M. Assessing the significance of changes in ENSO amplitude using variance metrics. J. Clim. 27, 4911–4922 (2014).

    Google Scholar 

  43. Kug, J.-S., Jin, F.-F. & An, S.-I. Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J. Clim. 22, 1499–1515 (2009).

    Google Scholar 

  44. Karamperidou, C., Di Nezio, P. N., Timmermann, A., Jin, F.-F. & Cobb, K. M. The response of ENSO flavors to mid-Holocene climate: implications for proxy interpretation. Paleoceanography 30, 527–547 (2015).

    Google Scholar 

  45. Newman, M., Shin, S.-I. & Alexander, M. A. Natural variation in ENSO flavors. Geophys. Res. Lett. 38, L14705 (2011).

    Google Scholar 

  46. Luan, Y., Braconnot, P., Yu, Y. & Zheng, W. Tropical Pacific mean state and ENSO changes: sensitivity to freshwater flux and remnant ice sheets at 9.5 ka BP. Clim. Dynam. 44, 661–678 (2015).

    Google Scholar 

  47. Roberts, W. H. G., Battisti, D. S. & Tudhope, A. W. ENSO in the mid-Holocene according to CSM and HadCM3. J. Clim. 27, 1223–1242 (2013).

    Google Scholar 

  48. Bellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M. & Vialard, J. ENSO representation in climate models: from CMIP3 to CMIP5. Clim. Dynam. 42, 1999–2018 (2014).

    Google Scholar 

  49. Lloyd, J., Guilyardi, E. & Weller, H. The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part III: the shortwave flux feedback. J. Clim. 25, 4275–4293 (2012).

    Google Scholar 

  50. Cook, E. R. & Peters, K. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull. 41, 45–53 (1981).

    Google Scholar 

  51. Weinert, H. L. A fast compact algorithm for cubic spline smoothing. Comput. Stat. Data Anal. 53, 932–940 (2009).

    Google Scholar 

  52. Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (Chapman & Hall, 1993).

    Google Scholar 

  53. Kunsch, H. R. The jackknife and the bootstrap for general stationary observations. Ann. Stat. 17, 1217–1241 (1989).

    Google Scholar 

  54. Carré, M., Sachs, J. P., Wallace, J. M. & Favier, C. Exploring errors in paleoclimate proxy reconstructions using Monte Carlo simulations: paleotemperature from mollusk and coral geochemistry. Clim. Past 8, 433–450 (2012).

    Google Scholar 

  55. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2011).

    Google Scholar 

  56. Flato, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 741–866 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  57. Luan, Y., Braconnot, P., Yu, Y., Zheng, W. & Marti, O. Early and mid-Holocene climate in the tropical Pacific: seasonal cycle and interannual variability induced by insolation changes. Clim. Past 8, 1093–1108 (2012).

    Google Scholar 

  58. Dunbar, R. B., Wellington, G. M., Colgan, M. W. & Glynn, P. W. Eastern Pacific sea surface temperature since 1600 A.D.: the δ18O record or climate variability in Galápagos corals. Paleoceanography 9, 291–316 (1994).

    Google Scholar 

  59. Evans, M., Fairbanks, R. & Rubenstone, J. The thermal oceanographic signal of El Niño reconstructed from a Kiritimati Island coral. J. Geophys. Res. 104, 13409–13422 (1999).

    Google Scholar 

  60. Cobb, K. M., Charles, C. D. & Hunter, D. E. A central tropical Pacific coral demonstrates Pacific, Indian, and Atlantic decadal climate connections. Geophys. Res. Lett. 28, 2209–2212 (2001).

    Google Scholar 

  61. Fairbanks, R. G. et al. Evaluating climate indices and their geochemical proxies measured in corals. Coral Reefs 16, S93–S100 (1997).

    Google Scholar 

  62. Conroy, J. L., Cobb, K. M., Lynch-Stieglitz, J. & Polissar, P. J. Constraints on the salinity–oxygen isotope relationship in the central tropical Pacific Ocean. Mar. Chem. 161, 26–33 (2014).

    Google Scholar 

  63. Evans, M. N., Tolwinski-Ward, S. E., Thompson, D. M. & Anchukaitis, K. J. Applications of proxy system modeling in high resolution paleoclimatology. Quat. Sci. Rev. 76, 16–28 (2013).

    Google Scholar 

  64. McConnaughey, T. 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochim. Cosmochim. Acta 53, 151–162 (1989).

    Google Scholar 

  65. Russon, T., Tudhope, A. W., Hegerl, G. C., Collins, M. & Tindall, J. Inter-annual tropical Pacific climate variability in an isotope-enabled CGCM: implications for interpreting coral stable oxygen isotope records of ENSO. Clim. Past 9, 1543–1557 (2013).

    Google Scholar 

  66. Stevenson, S., McGregor, H. V., Phipps, S. J. & Fox-Kemper, B. Quantifying errors in coral-based ENSO estimates: toward improved forward modeling of δ18O. Paleoceanography 28, 633–649 (2013).

    Google Scholar 

  67. Thompson, D. M. et al. Coral-model comparison highlighting the role of salinity in long-term trends. PAGES Newsl. 21, 60–61 (2013).

    Google Scholar 

  68. Lough, J. A strategy to improve the contribution of coral data to high-resolution paleoclimatology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 204, 115–143 (2004).

    Google Scholar 

  69. LeGrande, A. N. & Schmidt, G. A. Water isotopologues as a quantitative paleosalinity proxy. Paleoceanography 26, PA3225 (2011).

    Google Scholar 

  70. Grossman, E. L. & Ku, T.-L. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem. Geol. 59, 59–74 (1986).

    Google Scholar 

  71. Carré, M. et al. Stable isotopes and sclerochronology of the bivalve Mesodesma donacium: potential application to Peruvian paleoceanographic reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 228, 4–25 (2005).

    Google Scholar 

  72. Russon, T., Tudhope, A. W., Collins, M. & Hegerl, G. C. Inferring changes in ENSO amplitude from the variance of proxy records. Geophys. Res. Lett. 42, 1197–1204 (2015).

    Google Scholar 

  73. Van Huffel, S. Total Least Squares and Errors-in-Variables Modeling: Bridging the Gap between Statistics, Computational Mathematics and Engineering 539–555 (Physica-Verlag, 2004).

    Google Scholar 

  74. Markovsky, I., Sima, D. M. & Van Huffel, S. Total least squares methods. Wiley Interdiscip. Rev. 2, 212–217 (2010).

    Google Scholar 

  75. Pešta, M. Total least squares and bootstrapping with applications in calibration. Statistics 47, 966–991 (2013).

    Google Scholar 

  76. Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998).

    Google Scholar 

  77. Ebisuzaki, W. A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Clim. 10, 2147–2153 (1997).

    Google Scholar 

Download references

Acknowledgements

We acknowledge the World Climate Research Program’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the PMIP3 modelling groups for producing and making available their model output. The US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support for CMIP, and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. J.E.-G. acknowledges support from US NSF grant DMS 1025465. K.M.C. acknowledges support from NOAA award NA11OAR4310166 and NSF award OCE-0752091. M.Collins acknowledges support from UK NERC grant NE/H009957/1. H.V.M. and A.T. acknowledge support from Australian Research Council (ARC) Discovery Project grant DP1092945. H.V.M. is supported by an ARC Future Fellowship FT140100286 grant. A.T. acknowledges support from UK NERC grant NE/H009957/1. T.C. thanks M. McCulloch (formerly at ANU) for dating the Bayes coral, and M. Gagan’s team at ANU for help with isotopic measurements. The Bayes 1 core was collected with funds from the Institut de Recherche pour le Développement. B.S. was supported by the DFG Cluster of Excellence ‘The Future Ocean’ (EXC 80/2). P.B., M.Carré, T.C., J.L., M.E. and A.T. were supported by the French National Research Agency under EL PASO grant (no. 2010 298 BLANC 608 01). This project also serves for coordination and implementation of the PMIP3/CMIP5 simulations on the ESGF distributed database. We thank J.-Y. Peterschmitt for his help with the PMIP database. This work was initiated in a workshop co-sponsored by WCRP/CLIVAR, IGBP/PAGES, INQUA and IPSL in 2011.

Author information

Authors and Affiliations

Authors

Contributions

J.E.G. designed the study, performed the analysis, led the writing, and prepared the manuscript. P.B. coordinated the synthesis. M.Carré, K.M.C., T.C., M.E. and R.D. contributed data and/or analysis. P.B. and J.L. analysed simulations and contributed to writing. Y.Z. processed PMIP3 output and generated some of the supplementary figures. A.T., B.S. and M.Collins provided input in the analysis and interpretation. J.E.G., K.M.C., M.Carré, S.P.H., H.V.M., T.C., P.B. and A.T. wrote the paper. All authors reviewed the manuscript.

Corresponding author

Correspondence to J. Emile-Geay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 12955 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Emile-Geay, J., Cobb, K., Carré, M. et al. Links between tropical Pacific seasonal, interannual and orbital variability during the Holocene. Nature Geosci 9, 168–173 (2016). https://doi.org/10.1038/ngeo2608

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2608

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing