Link between plate fabric, hydration and subduction zone seismicity in Alaska


Subduction zones worldwide exhibit remarkable variation in seismic activity over short distances of about tens of kilometres along their length. The properties of the subducting oceanic plate are believed to influence this seismic behaviour. However, comparisons between seismicity and plate attributes such as thermal structure made over large scales of hundreds of kilometres typically yield poor correlations1,2. Here we present results from controlled-source seismic data collected offshore of the Alaska Peninsula. We find that fabric in the subducting oceanic plate—the orientation and style of remnant faults originally created at the mid-ocean ridge—can contribute to abrupt changes in faulting and hydration of the plate during bending before subduction. Variations in fabric, bending faulting and hydration correlate with changes in seismicity throughout the subduction zone. More interplate and intermediate-depth intraplate earthquakes are observed where the pre-existing fabric is aligned with the trench and there is more bend faulting and hydration. This suggests that pre-existing structures in the subducting plate are an important control on abrupt variations in deformation and plate hydration and on globally observed short-wavelength variations in seismicity at subduction zones.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Fabric in the subducting plate and seismicity in the Alaska Peninsula subduction zone.
Figure 2: Comparison of bending faulting and hydration between the Shumagin Gap and Semidi segment.


  1. 1

    Barcheck, C. G., Wiens, D. A., van Keken, P. E. & Hacker, B. R. The relationship of intermediate- and deep-focus seismicity to the hydration and dehydration of subduction slabs. Earth Planet. Sci. Lett. 349, 153–160 (2012).

    Article  Google Scholar 

  2. 2

    Hacker, B. R. H2O subduction beyond arcs. Geochem. Geophys. Geosyst. 9, Q03001 (2008).

    Article  Google Scholar 

  3. 3

    Davies, J., Sykes, L., House, L. & Jacob, K. Shumagin seismic gap, Alaska Peninsula: History of great earthquakes, tectonic setting, and evidence for high seismic potential. J. Geophys. Res. 86, 3821–3855 (1981).

    Article  Google Scholar 

  4. 4

    Fournier, T. J. & Freymueller, J. T. Transition from locked to creeping subduction in the Shumagin region, Alaska. Geophys. Res. Lett. 34, L06303 (2007).

    Article  Google Scholar 

  5. 5

    Abers, G. A. Relationship between shallow- and intermediate-depth seismicity in the eastern Aleutian subduction zone. Geophys. Res. Lett. 19, 2019–2022 (1992).

    Article  Google Scholar 

  6. 6

    Sella, G. F., Dixon, T. H. & Mao, A. REVEL: A model for recent plate velocities from space geodesy. J. Geophys. Res. 107, ETG 11-1–ETG 11-30 (2002).

    Article  Google Scholar 

  7. 7

    Plafker, G., Moore, J. C. & Winkler, G. R. in The Geology of Alaska (eds Plafker, G. & Berg, H. C.) 389–449 (Geological Society of America, 1994).

    Google Scholar 

  8. 8

    Lonsdale, P. Paleogene history of the Kula plate: Offshore evidence and onshore implications. Geol. Soc. Am. Bull. 10, 733–754 (1988).

    Article  Google Scholar 

  9. 9

    Bécel, A., Shillington, D. J., Nedimović, M. R., Webb, S. C. & Kuehn, H. Origin of dipping structures in fast-spreading oceanic lower crust offshore Alaska imaged by multichannel seismic data. Earth Planet. Sci. Lett. 424, 26–37 (2015).

    Article  Google Scholar 

  10. 10

    Kobayashi, K., Nakanishi, M., Tamaki, K. & Ogawa, Y. Outer slope faulting associated with the western Kuril and Japan trenches. Geophys. J. Int. 134, 356–372 (1998).

    Article  Google Scholar 

  11. 11

    Masson, D. G. Fault patterns at outer trench walls. Mar. Geophys. Res. 13, 209–225 (1991).

    Article  Google Scholar 

  12. 12

    Ranero, C. R., Phipps Morgan, J., McIntosh, K. & Reichert, C. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425, 367–373 (2003).

    Article  Google Scholar 

  13. 13

    Christensen, D. H. & Ruff, L. J. Seismic coupling and outer rise earthquakes. J. Geophys. Res. 93, 13421–413444 (1988).

    Article  Google Scholar 

  14. 14

    Emry, E. L., Wiens, D. A. & Garcia-Castellanos, D. Faulting within the Pacific plate at the Mariana Trench: Implications for plate interface coupling and subduction of hydrous minerals. J. Geophys. Res. 119, 3076–3095 (2014).

    Article  Google Scholar 

  15. 15

    Ivandic, M., Grevemeyer, I., Berhorst, A., Flueh, E. R. & McIntosh, K. Impact of bending related faulting on the seismic properties of the incoming oceanic plate offshore of Nicaragua. J. Geophys. Res. 113, B05410 (2008).

    Article  Google Scholar 

  16. 16

    Fujie, G. et al. Systematic changes in the incoming plate structure at the Kurile trench. Geophys. Res. Lett. 40, 88–93 (2013).

    Article  Google Scholar 

  17. 17

    Christensen, N. I. Serpentinites, peridotites, and seismology. Int. Geol. Rev. 46, 795–816 (2004).

    Article  Google Scholar 

  18. 18

    Carlson, R. L. & Miller, D. J. Mantle wedge water contents estimated from seismic velocities in partially serpentinized peridotites. Geophys. Res. Lett. 30, 1250 (2003).

    Article  Google Scholar 

  19. 19

    Van Avendonk, H. J. A., Holbrook, W. S., Lizarralde, D. & Denyer, P. Structure and serpentinization of the subducting Cocos plate offshore Nicaragua and Costa Rica. Geochem. Geophys. Geosyst. 12, Q06009 (2011).

    Article  Google Scholar 

  20. 20

    Kirby, S. H., Stein, S., Okal, E. A. & Rubie, D. C. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Rev. Geophys. 34, 261–306 (1996).

    Article  Google Scholar 

  21. 21

    van Keken, P. E., Hacker, B. R., Syracuse, E. M. & Abers, G. A. Subduction factory 4: Depth-dependent flux of H2O from subduction slabs worldwide. J. Geophys. Res. 116, B01401 (2011).

    Article  Google Scholar 

  22. 22

    Jiao, W., Silver, P. G., Fei, Y. & Prewitt, C. T. Do intermediate- and deep-focus earthquakes occur on pre-existing weak zones? An examination of the Tonga subduction zone. J. Geophys. Res. 105, 28125–128138 (2000).

    Article  Google Scholar 

  23. 23

    Ranero, C. R., Villaseñor, A., Morgan, J. P. & Weinrebe, W. Relationship between bend-faulting at trenches and intermediate depth seismicity. Geochem. Geophys. Geosyst. 6, Q12002 (2005).

    Article  Google Scholar 

  24. 24

    Kelemen, P. B. & Hirth, G. A periodic shear-heating mechanism for intermediate-depth earthquakes in the mantle. Nature 446, 787–790 (2007).

    Article  Google Scholar 

  25. 25

    Ruff, L. J. Do trench sediments affect great earthquake occurrence in subduction zones? Pageoph 129, 263–282 (1989).

    Article  Google Scholar 

  26. 26

    Scholz, C. H. & Small, C. The effect of seamount subduction on seismic coupling. Geology 25, 487–490 (1997).

    Article  Google Scholar 

  27. 27

    Scholz, C. H. The Mechanics of Earthquakes and Faulting (Cambridge Univ, Press, 1990).

    Google Scholar 

  28. 28

    Saffer, D. M. & Tobin, H. J. Hydrogeology and mechanics of subduction zone forearcs: Fluid flow and pore pressure. Ann. Rev. Earth Planet. Sci. 39, 157–186 (2011).

    Article  Google Scholar 

  29. 29

    Maus, S. et al. EMAG2: A 2-arc min resolution Earth magnetic anomaly grid compiled from satellite, airborne, and marine magnetic measurements. Geochem. Geophys. Geosyst. 10, Q08005 (2009).

    Article  Google Scholar 

  30. 30

    Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4, 1027 (2003).

    Article  Google Scholar 

  31. 31

    Choo, J., Downton, J. & Dewar, J. LIFT: A new and practical approach to noise and multiple attenuation. First Break 22, 39–43 (2004).

    Article  Google Scholar 

  32. 32

    Caress, D. W. & Chayes, D. N. in Proc. of the IEEE Oceans 95 Conf. 997–1000 (MTS/IEEE, 1995).

    Google Scholar 

  33. 33

    Hobro, J. W. D., Singh, S. C. & Minshull, T. A. Three-dimensional tomographic inversion of combined reflection and refraction seismic traveltime data. Geophys. J. Int. 152, 79–93 (2003).

    Article  Google Scholar 

  34. 34

    Engdahl, E. R., van der Hilst, R. & Buland, R. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seismol. Soc. Am. 88, 722–743 (1998).

    Google Scholar 

  35. 35

    Korenaga, J. et al. Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography. J. Geophys. Res. 105, 21591–521614 (2000).

    Article  Google Scholar 

Download references


We gratefully acknowledge the captain, technical staff and crew of the RV Marcus G. Langseth and the Scripps OBS team, who made this data set possible through their remarkable dedication in a challenging environment. This work was supported by the National Science Foundation. We thank J. Gaherty and N. Miller for helpful feedback.

Author information




D.J.S., M.R.N. and S.C.W. obtained financial support for the marine seismic programme, and G.A.A., K.M.K. and D.J.S. obtained financial support for onshore seismic deployment through NSF grants. D.J.S., A.B., M.R.N., H.K., S.C.W., J.L. and M.D. collected marine data during a research cruise on RV Langseth, and K.M.K. and D.J.S. deployed and recovered onshore seismometers. D.J.S., A.B., M.R.N., H.K. and J.L. analysed marine seismic data, and D.J.S., G.A.A., K.M.K. and G.A.M.-S. analysed seismicity data. D.J.S. wrote the manuscript with contributions from all other authors.

Corresponding author

Correspondence to Donna J. Shillington.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 22057 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shillington, D., Bécel, A., Nedimović, M. et al. Link between plate fabric, hydration and subduction zone seismicity in Alaska. Nature Geosci 8, 961–964 (2015).

Download citation

Further reading