Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Climate-sensitive northern lakes and ponds are critical components of methane release

Abstract

Lakes and ponds represent one of the largest natural sources of the greenhouse gas methane. By surface area, almost half of these waters are located in the boreal region and northwards. A synthesis of measurements of methane emissions from 733 lakes and ponds north of 50° N, combined with new inventories of inland waters, reveals that emissions from these high latitudes amount to around 16.5 Tg CH4 yr−1 (12.4 Tg CH4-C yr−1). This estimate — from lakes and ponds alone — is equivalent to roughly two-thirds of the inverse model calculation of all natural methane sources in the region. Thermokarst water bodies have received attention for their high emission rates, but we find that post-glacial lakes are a larger regional source due to their larger areal extent. Water body depth, sediment type and ecoclimatic region are also important in explaining variation in methane fluxes. Depending on whether warming and permafrost thaw cause expansion or contraction of lake and pond areal coverage, we estimate that annual water body emissions will increase by 20–54% before the end of the century if ice-free seasons are extended by 20 days. We conclude that lakes and ponds are a dominant methane source at high northern latitudes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of study locations.
Figure 2: Ice-free season CH4 fluxes from lakes and ponds among ecoclimatic regions, permafrost zones, and water body and sediment types.
Figure 3: Daily ice-free season CH4 flux versus water body area and maximum water depth.
Figure 4: Differences in seasonal CH4 fluxes.

Similar content being viewed by others

References

  1. Kirschke, S. et al. Three decades of global methane sources and sinks. Nature Geosci. 6, 813–823 (2013).

    Google Scholar 

  2. Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).

    Google Scholar 

  3. Downing, J. A. et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006).

    Google Scholar 

  4. Smith, L. C., Sheng, Y. & MacDonald, G. M. A first pan-Arctic assessment of the influence of glaciation, permafrost, topography and peatlands on Northern Hemisphere lake distribution. Permafrost Periglac. 18, 201–208 (2007).

    Google Scholar 

  5. Bruhwiler, L. et al. CarbonTracker-CH4: an assimilation system for estimating emissions of atmospheric methane. Atmos. Chem. Phys. 14, 8269–8293 (2014).

    Google Scholar 

  6. Walter, K. M., Smith, L. C. & Stuart Chapin, F. Methane bubbling from northern lakes: present and future contributions to the global methane budget. Phil. Trans. R. Soc. A 365, 1657–1676 (2007).

    Google Scholar 

  7. Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M. & Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 331, 50–50 (2011).

    Google Scholar 

  8. Tan, Z. & Zhuang, Q. Arctic lakes are continuous methane sources to the atmosphere under warming conditions. Environ. Res. Lett. 10, 1–9 (2015).

    Google Scholar 

  9. Verpoorter, C., Kutser, T., Seekell, D. A. & Tranvik, L. J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).

    Google Scholar 

  10. Sepulveda-Jauregui, A., Walter Anthony, K. M., Martinez-Cruz, K., Greene, S. & Thalasso, F. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska. Biogeosciences 12, 3197–3223 (2015).

    Google Scholar 

  11. Greene, S., Walter Anthony, K. M., Archer, D., Sepulveda-Jauregui, A. & Martinez-Cruz, K. Modeling the impediment of methane ebullition bubbles by seasonal lake ice. Biogeosciences 11, 6791–6811 (2014).

    Google Scholar 

  12. Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  13. Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    Google Scholar 

  14. Schneider, P. & Hook, S. J. Space observations of inland water bodies show rapid surface warming since 1985. Geophys. Res. Lett. 37, L22405 (2010).

    Google Scholar 

  15. Dibike, Y., Prowse, T., Saloranta, T. & Ahmed, R. Response of Northern Hemisphere lake-ice cover and lake-water thermal structure patterns to a changing climate. Hydrol. Process. 25, 2942–2953 (2011).

    Google Scholar 

  16. Wik, M. et al. Energy input is primary controller of methane bubbling in subarctic lakes. Geophys. Res. Lett. 41, 555–560 (2014).

    Google Scholar 

  17. Thornton, B. F., Wik, M. & Crill, P. M. Climate-forced changes in available energy and methane bubbling from subarctic lakes. Geophys. Res. Lett. 42, 1936–1942 (2015).

    Google Scholar 

  18. Prowse, T. D. & Stephenson, R. L. The relationship between winter lake cover, radiation receipts and the oxygen deficit in temperate lakes. Atmos. Ocean 24, 386–403 (1986).

    Google Scholar 

  19. Rouse, W. R. et al. Effects of climate change on the freshwaters of Arctic and subarctic North America. Hydrol. Process. 11, 873–902 (1997).

    Google Scholar 

  20. Natchimuthu, S., Panneer Selvam, B. & Bastviken, D. Influence of weather variables on methane and carbon dioxide flux from a shallow pond. Biogeochemistry 119, 403–413 (2014).

    Google Scholar 

  21. Zeikus, J. G. & Winfrey, M. R. Temperature limitation of methanogenesis in aquatic sediments. Appl. Environ. Microbiol. 31, 99–107 (1976).

    Google Scholar 

  22. Kelly, C. A. & Chynoweth, D. P. The contributions of temperature and of the input of organic matter in controlling rates of sediment methanogenesis. Limnol. Oceanogr. 26, 891–897 (1981).

    Google Scholar 

  23. Yvon-Durocher, G. et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507, 488–491 (2014).

    Google Scholar 

  24. Martens, C. S. & Val Klump, J. Biogeochemical cycling in an organic-rich coastal marine basin—I. Methane sediment–water exchange processes. Geochim. Cosmochim. Acta 44, 471–490 (1980).

    Google Scholar 

  25. Bastviken, D., Cole, J., Pace, M. & Tranvik, L. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob. Biogeochem. Cycles 18, GB4009 (2004).

    Google Scholar 

  26. Walter Anthony, K. M. & Anthony, P. Constraining spatial variability of methane ebullition seeps in thermokarst lakes using point process models. J. Geophys. Res. Biogeosci. 118, 1–20 (2013).

    Google Scholar 

  27. Rasilo, T., Prairie, Y. T. & del Giorgio, P. A. Large-scale patterns in summer diffusive CH4 fluxes across boreal lakes, and contribution to diffusive C emissions. Glob. Change Biol. 21, 1124–1139 (2014).

    Google Scholar 

  28. Wik, M., Crill, P. M., Varner, R. K. & Bastviken, D. Multiyear measurements of ebullitive methane flux from three subarctic lakes. J. Geophys. Res. Biogeosci. 118, 1307–1321 (2013).

    Google Scholar 

  29. Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceangr. 54, 2298–2314 (2009).

    Google Scholar 

  30. Schuur, E. A. G. et al. Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change 119, 359–374 (2013).

    Google Scholar 

  31. Avis, C. A., Weaver, A. J. & Meissner, K. J. Reduction in areal extent of high-latitude wetlands in response to permafrost thaw. Nature Geosci. 4, 444–448 (2011).

    Google Scholar 

  32. van Huissteden, J. et al. Methane emissions from permafrost thaw lakes limited by lake drainage. Nature Clim. Change 1, 119–123 (2011).

    Google Scholar 

  33. Bouchard, F., Francus, P., Pienitz, R., Laurion, I. & Feyte, S. Subarctic thermokarst ponds: investigating recent landscape evolution and sediment dynamics in thawed permafrost of northern Québec (Canada). Arct. Antarct. Alp. Res. 46, 251–271 (2014).

    Google Scholar 

  34. Peterson, B. J. Trajectory shifts in the Arctic and subarctic freshwater cycle. Science 313, 1061–1066 (2006).

    Google Scholar 

  35. McClelland, J. W., Déry, S. J., Peterson, B. J., Holmes, R. M. & Wood, E. F. A pan-Arctic evaluation of changes in river discharge during the latter half of the 20th century. Geophys. Res. Lett. 33, L06715 (2006).

    Google Scholar 

  36. Boereboom, T., Depoorter, M., Coppens, S. & Tison, J. L. Gas properties of winter lake ice in northern Sweden: implication for carbon gas release. Biogeosciences 9, 827–838 (2012).

    Google Scholar 

  37. Petrescu, A. M. R. et al. Modeling regional to global CH4 emissions of boreal and Arctic wetlands. Glob. Biogeochem. Cycles 24, 1–12 (2010).

    Google Scholar 

  38. Melton, J. R. et al. Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences 10, 753–788 (2013).

    Google Scholar 

  39. Houweling, S., Kaminski, T., Dentener, F. J., Lelieveld, J. & Heimann, M. Inverse modeling of methane sources and sinks using the adjoint of a global transport model. J. Geophys. Res. 104, 26137–26160 (1999).

    Google Scholar 

  40. Krol, M. Can the variability in tropospheric OH be deduced from measurements of 1,1,1-trichloroethane (methyl chloroform)? J. Geophys. Res. 108, 4125 (2003).

    Google Scholar 

  41. Bousquet, P., Hauglustaine, D. A., Peylin, P., Carouge, C. & Ciais, P. Two decades of OH variability as inferred by an inversion of atmospheric transport and chemistry of methyl chloroform. Atmos. Chem. Phys. 5, 2635–2656 (2005).

    Google Scholar 

  42. Montzka, S. A. et al. Small interannual variability of global atmospheric hydroxyl. Science 331, 67–69 (2011).

    Google Scholar 

  43. Downing, J. Emerging global role of small lakes and ponds: little things mean a lot. Limnetica 29, 9–24 (2010).

    Google Scholar 

  44. Whitfield, C. J., Baulch, H. M., Chun, K. P. & Westbrook, C. J. Beaver-mediated methane emission: the effects of population growth in Eurasia and the Americas. AMBIO 44, 7–15 (2015).

    Google Scholar 

  45. Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 159–254 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  46. MacIntyre, S. et al. Climate-related variations in mixing dynamics in an Alaskan Arctic lake. Limnol. Oceanogr. 54, 2401–2417 (2009).

    Google Scholar 

  47. Schnurrenberger, D., Russell, J. & Kelts, K. Classification of lacustrine sediments based on sedimentary components. J. Paleolimnol. 29, 141–154 (2003).

    Google Scholar 

  48. McGinnis, D. F., Greinert, J., Artemov, Y., Beaubien, S. E. & Wüest, A. Fate of rising methane bubbles in stratified waters: how much methane reaches the atmosphere? J. Geophys. Res. 111, C09007 (2006).

    Google Scholar 

  49. Phelps, A. R., Peterson, K. M. & Jeffries, M. O. Methane efflux from high-latitude lakes during spring ice melt. J. Geophys. Res. 103, 29029–29036 (1998).

    Google Scholar 

  50. Laurion, I. et al. Variability in greenhouse gas emissions from permafrost thaw ponds. Limnol. Oceanogr. 55, 115–133 (2010).

    Google Scholar 

  51. Sellmann, P. V., Brown, J., Lewellen, R. I., McKim, H. & Merry, C. The Classification and Geomorphic Implications of Thaw Lakes on the Arctic Coastal Plain, Alaska Research Report 344 (Cold Regions Research and Engineering Laboratory, 1975).

    Google Scholar 

  52. Grosse, G., Jones, B. & Arp, C. Thermokarst lakes, drainage, and drained basins. Treat. Geomorph. 8, 325–353 (2013).

    Google Scholar 

  53. Grosse, G. et al. Distribution of Late Pleistocene Ice-Rich Syngenetic Permafrost of the Yedoma Suite in East and Central Siberia, Russia Open File Report 2013–1078 (USGS, 2013).

    Google Scholar 

  54. Strauss, J. et al. The deep permafrost carbon pool of the yedoma region in Siberia and Alaska. Geophys. Res. Lett. 40, 6165–6170 (2013).

    Google Scholar 

  55. Walter Anthony, K. et al. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511, 452–456 (2014).

    Google Scholar 

  56. Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D. & Chapin, F. S. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443, 71–75 (2006).

    Google Scholar 

  57. Anthony, K. M. W., Anthony, P., Grosse, G. & Chanton, J. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nature Geosci. 5, 1–8 (2012).

    Google Scholar 

  58. Brosius, L. S. et al. Using the deuterium isotope composition of permafrost meltwater to constrain thermokarst lake contributions to atmospheric CH4 during the last deglaciation. J. Geophys. Res. 117, G01022 (2012).

    Google Scholar 

  59. Kessler, M. A., Plug, L. J. & Walter Anthony, K. M. Simulating the decadal- to millennial-scale dynamics of morphology and sequestered carbon mobilization of two thermokarst lakes in NW Alaska. J. Geophys. Res. 117, 1–22 (2012).

    Google Scholar 

  60. Bowen, R. G., Dallimore, S. R., Côte, M. M., Wright, J. F. & Lorenson, T. D. in Proceedings of Ninth International Conference on Permafrost (eds Kane, D. L. & Hinkel, K. M.) 171–176 (Institute of Northern Engineering, Univ. Alaska Fairbanks, 2008).

    Google Scholar 

  61. Manasypov, R. M., Pokrovsky, O. S., Kirpotin, S. N. & Shirokova, L. S. Thermokarst lake waters across the permafrost zones of western Siberia. Cryosphere 8, 1177–1193 (2014).

    Google Scholar 

  62. Tank, S. E., Lesack, L. F. W., Gareis, J. A. L., Osburn, C. L. & Hesslein, R. H. Multiple tracers demonstrate distinct sources of dissolved organic matter to lakes of the Mackenzie Delta, western Canadian Arctic. Limnol. Oceanogr. 56, 1297–1309 (2011).

    Google Scholar 

  63. Hinkel, K. M., Frohn, R. C., Nelson, F. E., Eisner, W. R. & Beck, R. A. Morphometric and spatial analysis of thaw lakes and drained thaw lake basins in the western Arctic Coastal Plain, Alaska. Permafrost Periglac. 16, 327–341 (2005).

    Google Scholar 

  64. Prowse, T. et al. Past and future changes in Arctic lake and river ice. AMBIO 40, 53–62 (2011).

    Google Scholar 

  65. Sharma, S. & Magnuson, J. J. Oscillatory dynamics do not mask linear trends in the timing of ice breakup for Northern Hemisphere lakes from 1855 to 2004. Climatic Change 124, 835–847 (2014).

    Google Scholar 

  66. Surdu, C. M., Duguay, C. R., Brown, L. C. & Fernández Prieto, D. Response of ice cover on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950–2011): radar remote-sensing and numerical modeling data analysis. Cryosphere 8, 167–180 (2014).

    Google Scholar 

  67. Smith, L. C., Sheng, Y., MacDonald, G. M. & Hinzman, L. D. Disappearing Arctic lakes. Science 308, 1429–1429 (2005).

    Google Scholar 

  68. Andresen, C. G. & Lougheed, V. L. Disappearing Arctic tundra ponds: fine-scale analysis of surface hydrology in drained thaw lake basins over a 65 year period (1948–2013). J. Geophys. Res. Biogeosci. 120, 466–479 (2015).

    Google Scholar 

  69. Kicklighter, D. W. et al. Insights and issues with simulating terrestrial DOC loading of Arctic river networks. Ecol. Appl. 23, 1817–1836 (2013).

    Google Scholar 

  70. Wetzel, G. R. Limnology: Lake and River Ecosystems (Academic, 2001).

    Google Scholar 

  71. Belyea, L. R. & Clymo, R. S. in Patterned Mires and Mire Pools: Origin and Development, Flora and Fauna (eds Standen, V., Tallis, J. & Meade, R.) 55–65 (British Ecological Society, 1999).

    Google Scholar 

  72. Gao, X. et al. Permafrost degradation and methane: low risk of biogeochemical climate-warming feedback. Environ. Res. Lett. 8, 035014 (2013).

    Google Scholar 

  73. Brown, J., Ferrians, O. J. J., Heginbottom, J. A. & Melnikov, E. S. Circum-Arctic Map of Permafrost and Ground-Ice Conditions (National Snow and Ice Data Center, 1998, revised February 2001); http://go.nature.com/JQIke5

    Google Scholar 

  74. Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).

    Google Scholar 

  75. Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth. Syst. Sci. 11, 1633–1644 (2007).

    Google Scholar 

  76. Chen, D. & Chen, H. W. Using the Köppen classification to quantify climate variation and change: an example for 1901–2010. Environ. Devel. 6, 69–79 (2013).

    Google Scholar 

Download references

Acknowledgements

We thank the National Science Foundation (NSF) Vulnerability of Permafrost Carbon Research Coordination Network grant no. 955713 and the NSF Research, Synthesis, and Knowledge Transfer in a Changing Arctic: Science Support for the Study of Environmental Arctic Change grant no. 1331083 for support and ideas. Additional support came from the Climate in Cryosphere programme, a core project of the World Climate Research Programme, via the Permafrost Carbon Network. Financial support to M.W. was provided by the Department of Geological Sciences, Stockholm University and the Swedish Research Council (VR) grant no. 2007-4547 to Prof. P. Crill, and by the Nordic Center of Excellence DEFROST under the Nordic Top-Level Research Initiative. Financial support to S.M. was from U.S. NSF Awards ANS-1204267 and DEB 0919603. D.B. was supported by Linköping University and by grants from VR. We further thank P. Crill, B. Thornton and L. Bruhwiler for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.W. compiled the database, made the analysis and figures, and wrote the manuscript. R.K.V. and K.W.A. contributed to the database compilation. R.K.V., K.W.A., S.M. and D.B. assisted in data analysis, interpretation and in writing the manuscript.

Corresponding author

Correspondence to Martin Wik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2005 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wik, M., Varner, R., Anthony, K. et al. Climate-sensitive northern lakes and ponds are critical components of methane release. Nature Geosci 9, 99–105 (2016). https://doi.org/10.1038/ngeo2578

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2578

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology