Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lunar volatile depletion due to incomplete accretion within an impact-generated disk

Abstract

The Moon may have formed from an Earth-orbiting disk of vapour and melt produced by a giant impact1. The mantles of the Moon and Earth have similar compositions. However, it is unclear why lunar samples are more depleted in volatile elements than terrestrial mantle rocks2,3, given that an evaporative escape mechanism4 seems inconsistent with expected disk conditions5. Dynamical models6,7 suggest that the Moon initially accreted from the outermost disk, but later acquired up to 60% of its mass from melt originating from the inner disk. Here we combine dynamical, thermal and chemical models to show that volatile depletion in the Moon can be explained by preferential accretion of volatile-rich melt in the inner disk to the Earth, rather than to the growing Moon. Melt in the inner disk is initially hot and volatile poor, but volatiles condense as the disk cools. In our simulations, the delivery of inner disk melt to the Moon effectively ceases when gravitational interactions cause the Moon’s orbit to expand away from the disk, and this termination of lunar accretion occurs before condensation of potassium and more volatile elements. Thus, the portion of the Moon derived from the inner disk is expected to be volatile depleted. We suggest that this mechanism may explain part or all of the Moon’s volatile depletion, depending on the degree of mixing within the lunar interior.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simulation of the Moon’s accretion, reproduced from ref. 6.
Figure 2: Melt–vapour equilibria in a BSE-composition protolunar disk.
Figure 3: Clump formation temperature and volatile content.

Similar content being viewed by others

References

  1. Canup, R. M. Lunar-forming impacts: Processes and alternatives. Phil. Trans. R. Soc. A 372, 20130175 (2014).

    Article  Google Scholar 

  2. Taylor, S. R., Taylor, G. J. & Taylor, L. A. The Moon: A Taylor perspective. Geochim. Cosmochim. Acta 70, 5904–5918 (2006).

    Article  Google Scholar 

  3. Taylor, G. J. & Wieczorek, M. A. Lunar bulk chemical composition: A post-Gravity Recovery and Interior Laboratory reassessment. Phil. Trans. R. Soc. A 372, 20130242 (2014).

    Article  Google Scholar 

  4. Paniello, R. C., Day, J. M. D. & Moynier, F. Zinc isotopic evidence for the origin of the Moon. Nature 490, 376–379 (2012).

    Article  Google Scholar 

  5. Nakajima, M. & Stevenson, D. J. Hydrodynamic escape does not prevent the “Wet” Moon formation. In Proc. 45th Lunar Planet. Sci. Conf. 2770 (2014).

  6. Salmon, J. & Canup, R. M. Lunar accretion from a Roche-interior fluid disk. Astrophys. J. 760, 83 (2012).

    Article  Google Scholar 

  7. Salmon, J. & Canup, R. M. Accretion of the Moon from non-canonical discs. Phil. Trans. R. Soc. A 372, 20130256 (2014).

    Article  Google Scholar 

  8. Dauphas, N., Burkhardt, C., Warren, P. H. & Teng, F.-Z. Geochemical arguments for an Earth-like Moon-forming impactor. Phil. Trans. R. Soc. A 372, 20130244 (2014).

    Article  Google Scholar 

  9. Desch, S. J. & Taylor, G. J. A Model of the Moon’s Volatile depletion. In Proc. 42nd Lunar Planet. Sci. Conf. 2005 (2011).

  10. Desch, S. J. & Taylor, G. J. Isotopic mixing due to interaction between the protolunar disk and the Earth’s atmosphere. In Proc. 44th Lunar Planet. Sci. Conf. 2566 (2013).

  11. Day, J. M. D. & Moynier, F. Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon. Phil. Trans. R. Soc. A 372, 20130259 (2014).

    Article  Google Scholar 

  12. Visscher, C. & Fegley, B. Jr. Chemistry of impact-generated silicate melt-vapor debris disks. Astrophys. J. Lett. 767, L12 (2013).

    Article  Google Scholar 

  13. Ward, W. R. On the vertical structure of the protolunar disk. Astrophys. J. 744, 140 (2012).

    Article  Google Scholar 

  14. Thompson, C. & Stevenson, D. J. Gravitational instability in two-phase disks and the origin of the Moon. Astrophys. J. 333, 452–481 (1988).

    Article  Google Scholar 

  15. Nakajima, M. & Stevenson, D. J. Investigation of the initial state of the Moon-forming disk: Bridging SPH simulations and hydrostatic models. Icarus 223, 259–267 (2014).

    Article  Google Scholar 

  16. Ward, W. R. & Cameron, A. G. W. Disc evolution within the Roche limit. In Proc. 9th Lunar Planet. Sci. Conf. 1205–1207 (1978).

  17. Ward, W. R. On the evolution of the protolunar disc. Phil. Trans. R. Soc. A 372, 20130250 (2014).

    Article  Google Scholar 

  18. Fegley, B. Jr & Cameron, A. G. W. A vaporization model for iron/silicate fractionation in the Mercury protoplanet. Earth Planet. Sci. Lett. 82, 207–222 (1987).

    Article  Google Scholar 

  19. Schaefer, L. & Fegley, B. Jr. A thermodynamic model of high temperature lava vaporization on Io. Icarus 169, 216–241 (2004).

    Article  Google Scholar 

  20. Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003).

    Article  Google Scholar 

  21. Genda, H. & Abe, Y. Modification of a proto-lunar disk by hydrodynamic escape of silicate vapor. Earth Planets Space 55, 53–57 (2003).

    Article  Google Scholar 

  22. Elkins-Tanton, L. T., Burgess, S. & Yin, Q.-Z. The lunar magma ocean: Reconciling the solidification process with lunar petrology and geochronology. Earth Planet. Sci. Lett. 304, 326–336 (2011).

    Article  Google Scholar 

  23. Andrews-Hanna, J. C. et al. Ancient igneous intrusions and early expansion of the Moon revealed by GRAIL gravity gradiometry. Science 339, 675–678 (2013).

    Article  Google Scholar 

  24. Longhi, J. Experimental petrology and petrogenesis of mare volcanics. Geochim. Cosmochim. Acta 56, 2235–2251 (1992).

    Article  Google Scholar 

  25. Hauri, E. H., Saal, A. E., Rutherford, M. J. & Van Orman, J. A. Water in the Moon’s interior: Truth and consequences. Earth Planet. Sci. Lett. 409, 252–264 (2015).

    Article  Google Scholar 

  26. Albaréde, F., Albalat, E. & Lee, C.-T. A. An intrinsic volatility scale relevant to the Earth and Moon and the status of water in the Moon. Meteorol. Planet. Sci. 50, 568–577 (2015).

    Article  Google Scholar 

  27. Ćuk, M. & Stewart, S. T. Making the Moon from a fast-spinning earth: A giant impact followed by resonant despinning. Science 338, 1047–1052 (2012).

    Article  Google Scholar 

  28. Canup, R. M. Forming a Moon with an Earth-like composition via a giant impact. Science 338, 1052–1055 (2012).

    Article  Google Scholar 

  29. Machida, R. & Abe, Y. The evolution of an impact-generated partially vaporized circumplanetary disk. Astrophys. J. 617, 633–644 (2004).

    Article  Google Scholar 

  30. Ji, H., Burin, M., Schartman, E. & Goodman, J. Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks. Nature 444, 343–346 (2006).

    Article  Google Scholar 

  31. Edlund, E. M. & Ji, H. Nonlinear stability of laboratory quasi-Keplerian flows. Phys. Rev. E 89, 021004 (2014).

    Article  Google Scholar 

  32. Pahlevan, K. & Stevenson, D. J. Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 262, 438–449 (2007).

    Article  Google Scholar 

  33. Melosh, H. J. New approaches to the Moon’s isotopic crisis. Phil. Trans. R. Soc. A 372, 20130168 (2014).

    Article  Google Scholar 

  34. Fujii, Y. I., Okuzumi, S., Tanigawa, T. & Inutsuka, S. On the viability of the magnetorotational instability in circumplanetary disks. Astrophys. J. 785, 101 (2014).

    Article  Google Scholar 

  35. Ruden, S. P. & Pollack, J. B. The dynamical evolution of the protosolar nebula. Astrophys. J. 375, 740–760 (1991).

    Article  Google Scholar 

  36. Nakamoto, T. & Nakagawa, Y. Formation, early evolution, and gravitational stability of protoplanetary disks. Astrophys. J. 421, 640–650 (1994).

    Article  Google Scholar 

  37. Marigo, P. & Aringer, B. Low-temeprature gas opacity. Astrono. Astrophys. 508, 1539–1569 (2009).

    Article  Google Scholar 

  38. Petaev, M. I., Jacobsen, S. B. & Huang, S. Testing models of the Moon’s origin, II: Phase relation in a proto-lunar disk of the BSE composition. In Proc. 46th Lunar Planet. Sci. Conf. 2245 (2015).

Download references

Acknowledgements

We thank D. Stevenson for comments and suggestions. Funding from NASA’s Solar System Exploration Research Virtual Institute (SSERVI, for R.M.C., C.V. and J.S.), NASA’s Lunar Advanced Science and Exploration Research Program (LASER, for R.M.C.), and from NSF’s Planetary Astronomy Program (grant 1412175, for B.F.Jr) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

R.M.C. conceived the idea, integrated the component models, and wrote the paper. C.V. performed the chemical modelling and related analysis, J.S. performed the data analysis for the accretion models, and B.F.Jr provided the MAGMA model and relevant thermodynamic calculations for K, Na and Zn.

Corresponding author

Correspondence to Robin M. Canup.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1599 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canup, R., Visscher, C., Salmon, J. et al. Lunar volatile depletion due to incomplete accretion within an impact-generated disk. Nature Geosci 8, 918–921 (2015). https://doi.org/10.1038/ngeo2574

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2574

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing