Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios

Abstract

Ice shelves modulate Antarctic contributions to sea-level rise1 and thereby represent a critical, climate-sensitive interface between the Antarctic ice sheet and the global ocean. Following rapid atmospheric warming over the past decades2,3, Antarctic Peninsula ice shelves have progressively retreated4, at times catastrophically5. This decay supports hypotheses of thermal limits of viability for ice shelves via surface melt forcing3,5,6. Here we use a polar-adapted regional climate model7 and satellite observations8 to quantify the nonlinear relationship between surface melting and summer air temperature. Combining observations and multimodel simulations, we examine melt evolution and intensification before observed ice shelf collapse on the Antarctic Peninsula. We then assess the twenty-first-century evolution of surface melt across Antarctica under intermediate and high emissions climate scenarios. Our projections reveal a scenario-independent doubling of Antarctic-wide melt by 2050. Between 2050 and 2100, however, significant divergence in melt occurs between the two climate scenarios. Under the high emissions pathway by 2100, melt on several ice shelves approaches or surpasses intensities that have historically been associated with ice shelf collapse, at least on the northeast Antarctic Peninsula.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Melt–temperature nonlinearity and recent melting conditions.
Figure 2: Historical melt evolution before ice shelf collapse.
Figure 3: Twenty-first-century evolution of Antarctic surface melt.
Figure 4: Melt exceeding specific thresholds across time and space.

Similar content being viewed by others

References

  1. Joughin, I. & Alley, R. B. Stability of the West Antarctic ice sheet in a warming world. Nature Geosci. 4, 506–513 (2011).

    Article  Google Scholar 

  2. Turner, J. et al. Antarctic climate change during the last 50 years. Int. J. Climatol. 25, 279–294 (2005).

    Article  Google Scholar 

  3. Vaughan, D. G. & Doake, C. S. M. Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature 379, 328–331 (1996).

    Article  Google Scholar 

  4. Cook, A. J. & Vaughan, D. G. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere 4, 77–98 (2010).

    Article  Google Scholar 

  5. Scambos, T. A., Hulbe, C., Fahnestock, M. & Bohlander, J. The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol. 46, 516–530 (2000).

    Article  Google Scholar 

  6. Mercer, J. H. West Antarctic ice sheet and CO2 greenhouse effect: A threat of disaster. Nature 271, 321–325 (1978).

    Article  Google Scholar 

  7. Kuipers Munneke, P., Picard, G., van den Broeke, M. R., Lenaerts, J. T. M. & van Meijgaard, E. Insignificant change in Antarctic snowmelt volume since 1979. Geophys. Res. Lett. 39, L01501 (2012).

    Article  Google Scholar 

  8. Trusel, L. D., Frey, K. E., Das, S. B., Kuipers Munneke, P. & van den Broeke, M. R. Satellite-based estimates of Antarctic surface meltwater fluxes. Geophys. Res. Lett. 40, 6148–6153 (2013).

    Article  Google Scholar 

  9. Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

    Article  Google Scholar 

  10. Paolo, F. S., Fricker, H. A. & Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science 348, 327–331 (2015).

    Article  Google Scholar 

  11. Abram, N. J. et al. Acceleration of snow melt in an Antarctic Peninsula ice core during the twentieth century. Nature Geosci. 6, 404–411 (2013).

    Article  Google Scholar 

  12. Scambos, T. et al. Ice shelf disintegration by plate bending and hydro-fracture: Satellite observations and model results of the 2008 Wilkins ice shelf break-ups. Earth Planet. Sci. Lett. 280, 51–60 (2009).

    Article  Google Scholar 

  13. Miles, B. W. J., Stokes, C. R., Vieli, A. & Cox, N. J. Rapid, climate-driven changes in outlet glaciers on the Pacific coast of East Antarctica. Nature 500, 563–566 (2013).

    Article  Google Scholar 

  14. Kingslake, J., Ng, F. & Sole, A. Modelling channelized surface drainage of supraglacial lakes. J. Glaciol. 61, 185–199 (2015).

    Article  Google Scholar 

  15. Ohmura, A. Physical basis for the temperature-based melt-index method. J. Appl. Meteorol. 40, 751–761 (2001).

    Article  Google Scholar 

  16. Vaughan, D. G. Recent trends in melting conditions on the Antarctic Peninsula and their implications for ice-sheet mass balance and sea level. Arct. Antarct. Alp. Res. 38, 147–152 (2006).

    Article  Google Scholar 

  17. Barrand, N. E. et al. Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling. J. Geophys. Res. 118, 315–330 (2013).

    Article  Google Scholar 

  18. Davies, B. J. et al. Modelled glacier response to centennial temperature and precipitation trends on the Antarctic Peninsula. Nature Clim. Change 4, 993–998 (2014).

    Article  Google Scholar 

  19. Turner, J. et al. The SCAR READER project: Toward a high-quality database of mean Antarctic meteorological observations. J. Clim. 17, 2890–2898 (2004).

    Article  Google Scholar 

  20. Sergienko, O. & Macayeal, D. R. Surface melting on Larsen ice shelf, Antarctica. Ann. Glaciol. 40, 215–218 (2005).

    Article  Google Scholar 

  21. Van den Broeke, M. Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophys. Res. Lett. 32, L12815 (2005).

    Article  Google Scholar 

  22. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  23. Abram, N. J. et al. Evolution of the Southern Annular Mode during the past millennium. Nature Clim. Change 4, 564–569 (2014).

    Article  Google Scholar 

  24. Van Angelen, J. H., van den Broeke, M. R., Wouters, B. & Lenaerts, J. T. M. Contemporary (1960–2012) evolution of the climate and surface mass balance of the Greenland ice sheet. Surv. Geophys. 35, 1155–1174 (2013).

    Article  Google Scholar 

  25. Holland, P. R. et al. Oceanic and atmospheric forcing of Larsen C ice-shelf thinning. Cryosphere 9, 1005–1024 (2015).

    Article  Google Scholar 

  26. Kuipers Munneke, P., Ligtenberg, S. R. M., van Den Broeke, M. R. & Vaughan, D. G. Firn air depletion as a precursor of Antarctic ice-shelf collapse. J. Glaciol. 60, 205–214 (2014).

    Article  Google Scholar 

  27. Pritchard, H. D. & Vaughan, D. G. Widespread acceleration of tidewater glaciers on the Antarctic Peninsula. J. Geophys. Res. 112, F03S29 (2007).

    Article  Google Scholar 

  28. Davies, B. J., Carrivick, J. L., Glasser, N. F., Hambrey, M. J. & Smellie, J. L. Variable glacier response to atmospheric warming, northern Antarctic Peninsula, 1988–2009. Cryosphere 6, 1031–1048 (2012).

    Article  Google Scholar 

  29. Braun, M., Humbert, A. & Moll, A. Changes of Wilkins ice shelf over the past 15 years and inferences on its stability. Cryosphere 3, 41–56 (2009).

    Article  Google Scholar 

  30. Holland, P. R., Jenkins, A. & Holland, D. M. The response of ice shelf basal melting to variations in ocean temperature. J. Clim. 21, 2558–2572 (2008).

    Article  Google Scholar 

  31. Van Meijgaard, E. et al. The KNMI Regional Atmospheric Climate Model RACMO, Version 2.1. Technical Report (KNMI, 2008).

  32. Dee, D. P. et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  33. Hazeleger, W. et al. EC-Earth V2.2: Description and validation of a new seamless Earth system prediction model. Clim. Dynam. 39, 2611–2629 (2012).

    Article  Google Scholar 

  34. Van Vuuren, D. P. et al. The representative concentration pathways: An overview. Climatic Change 109, 5–31 (2011).

    Article  Google Scholar 

  35. Giorgi, F., Jones, C. & Asrar, G. R. Addressing climate information needs at the regional level: The CORDEX framework. Bull. World Meteorol. Org. 58, 175–183 (2009).

    Google Scholar 

  36. Van den Broeke, M. Depth and density of the Antarctic firn layer. Arct. Antarct. Alp. Res. 40, 432–438 (2008).

    Article  Google Scholar 

  37. Van Lipzig, N. P. M., Marshall, G. J., Orr, A. & King, J. C. The relationship between the Southern Hemisphere Annular Mode and Antarctic Peninsula Summer Temperatures: Analysis of a high-resolution model climatology. J. Clim. 21, 1649–1668 (2008).

    Article  Google Scholar 

  38. Lenaerts, J. T. M. et al. Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation. J. Geophys. Res. 117, D05108 (2012).

    Google Scholar 

  39. Reijmer, C. H., van Meijgaard, E. & van den Broeke, M. R. Evaluation of temperature and wind over Antarctica in a regional atmospheric climate model using 1 year of automatic weather station data and upper air observations. J. Geophys. Res. 110, D04103 (2005).

    Article  Google Scholar 

  40. Van de Berg, W. J., van den Broeke, M. R., Reijmer, C. H. & van Meijgaard, E. Characteristics of the Antarctic surface mass balance, 1958–2002, using a regional atmospheric climate model. Ann. Glaciol. 41, 97–104 (2005).

    Article  Google Scholar 

  41. Maris, M. N. A., de Boer, B. & Oerlemans, J. A climate model intercomparison for the Antarctic region: Present and past. Clim. Past 8, 803–814 (2012).

    Article  Google Scholar 

  42. Haran, T., Bohlander, J., Scambos, T., Painter, T. & Fahnestock, M. MODIS Mosaic of Antarctica (MOA) Image Map (National Snow and Ice Data Center, 2005).

    Google Scholar 

  43. Lawrence, D. M. et al. Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. J. Adv. Model. Earth Syst. 3, M03001 (2011).

    Google Scholar 

  44. Oleson, K. et al. Technical Description of Version 4.0 of the Community Land Model (CLM) 257 Report No. NCAR/TN-4781STR (NCAR, 2010).

  45. Jones, C. D. et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev. 4, 543–570 (2011).

    Article  Google Scholar 

  46. Fyke, J. G., Carter, L., Mackintosh, A., Weaver, A. J. & Meissner, K. J. Surface melting over ice shelves and ice sheets as assessed from modeled surface air temperatures. J. Clim. 23, 1929–1936 (2010).

    Article  Google Scholar 

  47. Radic, V. & Hock, R. Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nature Geosci. 4, 91–94 (2011).

    Article  Google Scholar 

  48. Radić, V. & Hock, R. Modeling future glacier mass balance and volume changes using ERA-40 reanalysis and climate models: A sensitivity study at Storglaciären, Sweden. J. Geophys. Res. 111, F03003 (2006).

    Article  Google Scholar 

  49. Gardner, A. S. et al. Near-surface temperature lapse rates over Arctic glaciers and their implications for temperature downscaling. J. Clim. 22, 4281–4298 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

L.D.T. was supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program (grant NNX12AO01H) and the Doherty Postdoctoral Scholarship at the Woods Hole Oceanographic Institution. Funding for this research was additionally provided by the NASA Cryospheric Sciences Program (grant NNX10AP09G to S.B.D. and K.E.F.). M.R.v.d.B. and P.K.M. acknowledge support from the Netherlands Earth System Science Centre (NESSC) and the Polar Program of the Netherlands Organization of Scientific Research. The KNMI-RACMO2 simulations were supported by the Dutch Ministry of Infrastructure and the Environment. We acknowledge the World Climate Research Program’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups (listed in Supplementary Table 3 of this paper) for producing and making available their model output. For CMIP the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

Authors and Affiliations

Authors

Contributions

L.D.T., K.E.F. and S.B.D. conceived the study. P.K.M., E.v.M. and M.R.v.d.B. performed RACMO2 simulations. L.D.T. led the data analysis and wrote the paper with contributions from K.E.F., S.B.D. and K.B.K. All authors contributed to interpretation of results and commented on the manuscript.

Corresponding author

Correspondence to Luke D. Trusel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1697 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trusel, L., Frey, K., Das, S. et al. Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nature Geosci 8, 927–932 (2015). https://doi.org/10.1038/ngeo2563

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2563

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing