Abstract
Explosive volcanism can alter global climate, and hence trigger economic, political and demographic change1,2. The climatic impact of the largest volcanic events has been assessed in numerous modelling studies and tree-ring-based hemispheric temperature reconstructions3,4,5,6. However, volcanic surface cooling derived from climate model simulations is systematically much stronger than the cooling seen in tree-ring-based proxies, suggesting that the proxies underestimate cooling7,8; and/or the modelled forcing is unrealistically high9. Here, we present summer temperature reconstructions for the Northern Hemisphere from tree-ring width and maximum latewood density over the past 1,500 years. We also simulate the climate effects of two large eruptions, in AD 1257 and 1815, using a climate model that accounts explicitly for self-limiting aerosol microphysical processes3,10. Our tree-ring reconstructions show greater cooling than reconstructions with lower spatial coverage and based on tree-ring width alone, whereas our simulations show less cooling than previous simulations relying on poorly constrained eruption seasons and excluding nonlinear aerosol microphysics. Our tree-ring reconstructions and climate simulations are in agreement, with a mean Northern Hemisphere extra-tropical summer cooling over land of 0.8 to 1.3 °C for these eruptions. This reconciliation of proxy and model evidence paves the way to improved assessment of the role of both past and future volcanism in climate forcing.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Lunar eclipses illuminate timing and climate impact of medieval volcanism
Nature Open Access 05 April 2023
-
Tropical volcanoes synchronize eastern Canada with Northern Hemisphere millennial temperature variability
Nature Communications Open Access 26 August 2022
-
Volcanic effects on climate: recent advances and future avenues
Bulletin of Volcanology Open Access 04 May 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Oppenheimer, C. Eruptions that Shook the World (Cambridge Univ. Press, 2011).
Sigl, M. et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523, 543–549 (2015)
Timmreck, C. et al. Limited temperature response to the very large AD 1258 volcanic eruption. Geophys. Res. Lett. 36, L21708 (2009).
Briffa, K. R., Jones, P. D., Schweingruber, F. H. & Osborn, T. J. Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature 393, 450–455 (1998).
D’Arrigo, R., Wilson, R. & Jacoby, G. On the long-term context for late twentieth century warming. J. Geophys. Res. 111, D03103 (2006).
Anchukaitis, K. J. et al. Tree rings and volcanic cooling. Nature Geosci. 5, 836–837 (2012).
Büntgen, U. et al. Extraterrestrial confirmation of tree-ring dating. Nature Clim. Change 4, 404–405 (2014).
Mann, M. E., Fuentes, J. D. & Rutherford, S. Underestimation of volcanic cooling in tree-ring-based reconstructions of hemispheric temperatures. Nature Geosci. 5, 202–205 (2012).
Marotzke, J. & Forster, P. M. Forcing, feedback and internal variability in global temperature trends. Nature 517, 565–570 (2015).
Pinto, J. P., Turco, R. P. & Toon, O. B. Self-limiting physical and chemical effects in volcanic eruption clouds. J. Geophys. Res. 94, 11174 (1989).
Lavigne, F. et al. Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia. Proc. Natl Acad. Sci. USA 110, 16742–16747 (2013).
Oppenheimer, C. Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Prog. Phys. Geogr. 27, 230–259 (2003).
Luterbacher, J. & Pfister, C. The year without a summer. Nature Geosci. 8, 246–248 (2015).
D’Arrigo, R., Wilson, R. & Anchukaitis, K. J. Volcanic cooling signal in tree ring temperature records for the past millennium. J. Geophys. Res. 118, 9000–9010 (2013).
Rohde, R., Muller, R. A., Jacobsen, R., Muller, E. & Wickham, C. A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geoinform. Geostat. Overv. 01, 1000101 (2013).
Jones, P. D. et al. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res. 117, D05127 (2012).
Esper, J. Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295, 2250–2253 (2002).
Esper, J. et al. European summer temperature response to annually dated volcanic eruptions over the past nine centuries. Bull. Volcanol. 75, 736 (2013).
Schneider, L. et al. Revising midlatitude summer temperatures back to A.D. 600 based on a wood density network: Revising hemispheric temperature history. Geophys. Res. Lett. 42, 4556–4562 (2015).
Gao, C., Robock, A. & Ammann, C. Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J. Geophys. Res. 113, D23111 (2008).
Crowley, T. J. & Unterman, M. B. Technical details concerning development of a 1200 yr proxy index for global volcanism. Earth Syst. Sci. Data 5, 187–197 (2013).
Schmidt, G. A. et al. Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci. Model Dev. 4, 33–45 (2011).
Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Clim. Dynam. 40, 2123–2165 (2013).
Bekki, S. et al. Coupled aerosol-chemical modeling of UARS HNO3 and N2O5 measurements in the Arctic upper stratosphere. J. Geophys. Res. 102, 8977–8984 (1997).
Kravitz, B. & Robock, A. Climate effects of high-latitude volcanic eruptions: Role of the time of year. J. Geophys. Res. 116, D01105 (2011).
Toohey, M., Krüger, K., Niemeier, U. & Timmreck, C. The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions. Atmos. Chem. Phys. 11, 12351–12367 (2011).
Aquila, V., Oman, L. D., Stolarski, R. S., Colarco, P. R. & Newman, P. A. Dispersion of the volcanic sulfate cloud from a Mount Pinatubo-like eruption. J. Geophys. Res. 117, D06216 (2012).
Gao, C., Oman, L., Robock, A. & Stenchikov, G. L. Atmospheric volcanic loading derived from bipolar ice cores: Accounting for the spatial distribution of volcanic deposition. J. Geophys. Res. 112, D09109 (2007).
Self, S., Gertisser, R., Thordarson, T., Rampino, M. R. & Wolff, J. A. Magma volume, volatile emissions, and stratospheric aerosols from the 1815 eruption of Tambora. Geophys. Res. Lett. 31, L20608 (2004).
Read, W. G., Froidevaux, L. & Waters, J. W. Microwave limb sounder measurement of stratospheric SO2 from the Mt. Pinatubo Volcano. Geophys. Res. Lett. 20, 1299–1302 (1993).
Stothers, R. B. Climatic and Demographic Consequences of the Massive Volcanic Eruption of 1258. Climatic Change 45, 361–374 (2000).
Nicault, A., Guiot, J., Edouard, J. L. & Brewer, S. Preserving long-term fluctuations in standardisation of tree-ring series by the adaptative regional growth curve (ARGC). Dendrochronologia 28, 1–12 (2010).
Melvin, T. & Briffa, K. A ‘signal-free’ approach to dendroclimatic standardisation. Dendrochronologia 26, 71–86 (2008).
Cook, E. R. Long-term aridity changes in the western United States. Science 306, 1015–1018 (2004).
Osborn, T., Briffa, K. R. & Jones, P. D. Adjusting variance for sample-size in tree-ring chronologies and other regional-mean time-series. Dendrochronologia 15, 89–99 (1997).
Acknowledgements
O. Churakova (Sidorova), J.-L. Edouard, R. Hantemirov and Y. Zhang contributed millennium-long chronologies. V.P. was supported by a grant from the LABEX L-IPSL, funded by the French Agence Nationale de la Recherche under the ‘Programme d’Investissements d’Avenir’ (Grant no. ANR-10-LABX-18-01) and benefited from the IPSL CMIP data access PRODIGUER. S.B. was supported by the EU-FP7 StratoClim project (grant agreement 603557).
Author information
Authors and Affiliations
Contributions
M.S., M.K., C.C. and S.G. designed the study with input from V.P., S.B., J.G., B.H.L., C.O., M.B. and V.M.-D. S.G. and C.C. performed climate reconstructions; M.K., S.B., V.P. and N.L. compiled ice-core data for SO2 yields estimation, designed the experiments and ran the microphysical and GCM models. All authors contributed to discussion and writing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 3890 kb)
Rights and permissions
About this article
Cite this article
Stoffel, M., Khodri, M., Corona, C. et al. Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years. Nature Geosci 8, 784–788 (2015). https://doi.org/10.1038/ngeo2526
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ngeo2526
This article is cited by
-
Fennoscandian tree-ring anatomy shows a warmer modern than medieval climate
Nature (2023)
-
Lunar eclipses illuminate timing and climate impact of medieval volcanism
Nature (2023)
-
A Review of El Niño Southern Oscillation Linkage to Strong Volcanic Eruptions and Post-Volcanic Winter Warming
Earth Systems and Environment (2023)
-
Tropical volcanoes synchronize eastern Canada with Northern Hemisphere millennial temperature variability
Nature Communications (2022)
-
Southern Hemisphere continental temperature responses to major volcanic eruptions since 1883 in CMIP5 models
Theoretical and Applied Climatology (2022)