Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature
  • Published:

Snowball cooling after algal rise

The Earth underwent two snowball glaciation events between 720 and 635 million years ago. The preceding expansion of eukaryotic algae and a consequent rise in emissions of organic cloud condensation nuclei may have contributed to the dramatic cooling.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of eukaryotes and DMSP biosynthesis.
Figure 2: Temperatures before and after the increase in cloud condensation nuclei around 800 Ma.

References

  1. Hoffman, P. F. & Schrag, D. P. Terra Nova 14, 129–155 (2002).

    Article  Google Scholar 

  2. Feulner, G. Rev. Geophys. 50, RG2006 (2012).

    Article  Google Scholar 

  3. Tang, H. & Chen, Y. Geosci. Front. 4, 583–596 (2013).

    Article  Google Scholar 

  4. Kopp, R. E., Kirschvink, J. L., Hilburn, I. A. & Nash, C. Z. Proc. Natl Acad. Sci. USA 102, 11131–11136 (2005).

    Article  Google Scholar 

  5. Young, G. M., Brunn, V. V., Gold, D. J. C. & Minter, W. E. L. J. Geology 106, 523–538 (1998).

    Article  Google Scholar 

  6. Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. Nature 506, 307–315 (2014).

    Article  Google Scholar 

  7. Hoffmann, K., Condon, D., Prave, A. & Tapster, S. Geol. Soc. Am. Abstr. Prog. 46, 627 (GSA Annual Meeting, 2014).

    Google Scholar 

  8. Rooney, A. D. et al. Proc. Natl Acad. Sci. USA 111, 51–56 (2014).

    Article  Google Scholar 

  9. Godderis, Y. et al. Earth Planet. Sci. Lett. 211, 1–12 (2003).

    Article  Google Scholar 

  10. Twomey, S. J. Atmos. Sci. 34, 1149–1154 (1977).

    Article  Google Scholar 

  11. Albrecht, B. A. Science 245, 1227–1230 (1989).

    Article  Google Scholar 

  12. Simó, R. Trends Ecol. Evol. 16, 287–294 (2001).

    Article  Google Scholar 

  13. Charlson, R. J., Warren, S. G., Lovelock, J. E. & Andreae, M. O. Nature 326, 655–661 (1987).

    Article  Google Scholar 

  14. Knoll, A. H., Javaux, E. J., Hewitt, D. & Cohen, P. Phil. Trans. Royal Soc. B 361, 1023–1038 (2006).

    Article  Google Scholar 

  15. Knoll, A. H. Cold Spring Harb. Perspect. Biol. 6, a016121 (2014).

    Article  Google Scholar 

  16. Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. & Katz, L. A. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011).

    Article  Google Scholar 

  17. Summons, R. E. et al. Geochim. Cosmochim. Acta 52, 2625–2637 (1988).

    Article  Google Scholar 

  18. Keller, M. D. Biol. Oceanogr. 6, 375–382 (1989).

    Google Scholar 

  19. Stefels, J. J. Sea Res. 43, 183–197 (2000).

    Article  Google Scholar 

  20. Lyon, B. R., Lee, P. A., Bennett, J. M., DiTullio, G. R. & Janech, M. G. Plant Physiol. 157, 1926–1941 (2011).

    Article  Google Scholar 

  21. Keller, M. D., Bellows, W. K. & Guillard, R. R. L. in Biogenic Sulfur in the Environment (eds Saltzmann, E. S. & Cooper, W. J.) 167–182 (ACS Symposium Series 393, ACS, 1989).

    Book  Google Scholar 

  22. Kah, L. C., Lyons, T. W. & Frank, T. D. Nature 431, 834–838 (2004).

    Article  Google Scholar 

  23. Nguyen, B. C. et al. J. Atmos. Chem. 15, 39–53 (1992).

    Article  Google Scholar 

  24. Feulner, G. & Kienert, H. Earth Planet. Sci. Lett. 404, 200–205 (2014).

    Article  Google Scholar 

  25. Kump, L. R. & Pollard, D. Science 320, 195–195 (2008).

    Article  Google Scholar 

  26. Pawlowska, M. M., Butterfield, N. J. & Brocks, J. J. Geology 41, 103–106 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Z.-X. Li for providing the palaeocontinental reconstructions, S. Petri for preparing input data, M. Richter for help with bioinformatics, J.-B. Raina for insight into DMSP biosynthesis and E. Bauer, A. Eliseev, W. Lucht and A. Weiner for discussions. We thank T. Lenton and A. Voigt for suggestions that improved the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.H. and G.F. designed the research; G.F. and H.K. carried out the climate simulations; C.H. analysed DMSP biosynthesis; and G.F. and C.H. wrote the manuscript.

Corresponding authors

Correspondence to Georg Feulner or Christian Hallmann.

Supplementary information

Supplementary Information

Supplementary information (PDF 229 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feulner, G., Hallmann, C. & Kienert, H. Snowball cooling after algal rise. Nature Geosci 8, 659–662 (2015). https://doi.org/10.1038/ngeo2523

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2523

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology