Secular change in Archaean crust formation recorded in Western Australia

Abstract

The formation mechanisms for early Archaean continental crust are controversial. Continental crust may have accumulated via horizontal accretion in modern-style subduction zones or via vertical accretion above upper mantle upwelling zones. However, the characteristics of the continental crust changes at the transition between the Archaean and Proterozoic eons, suggesting that continental crust did not form in subduction zones until at least the late Archaean. Here I use seismic receiver function data to analyse the bulk properties of continental crust in Western Australia, which formed and stabilized over a billion years in the Archaean. I find that the bulk seismic properties of the crust cluster spatially, with similar clusters confined within the boundaries of tectonic terranes. I use local Archaean crustal growth models to show that both plume and subduction processes may have had a role in creating crust throughout the Archaean. A correlation between crustal age and the bulk seismic properties of the crust reveals a trend: from about 3.5 Gyr ago (Ga) to the end of the Archaean, the crust gradually thickened and simultaneously became more evolved in composition. I propose that this trend reflects the transition between crust dominantly formed above mantle plumes, to crust formed in subduction zones—a transition that may reflect secular cooling of Earth’s mantle.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Spatial distribution of the crustal observations in the Western Australian craton.
Figure 2: Clustering and temporal variations in the WA crust.
Figure 3: Comparison between the WA and global crust.

Change history

  • 10 September 2015

    In the version of this Letter originally published, the colour bar for Fig. 1d should have been labelled 'Bulk crustal Vp (km s-1)'. This has been corrected in all versions.

References

  1. 1

    Abbott, D. H., Mooney, W. D. & VanTongeren, J. A. The character of the Moho and lower crust within Archean cratons and the tectonic implications. Tectonophysics 609, 690–705 (2013).

  2. 2

    Durrheim, R. J. & Mooney, W. D. Archean and Proteozoic crustal evolution: Evidence from crustal seismology. Geology 19, 606–609 (1991).

  3. 3

    Rudnick, R. L. Making continental crust. Nature 378, 571–578 (1995).

  4. 4

    Naeraa, T. et al. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. Nature 485, 627–630 (2012).

  5. 5

    Keller, C. B. & Schoene, B. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature 485, 490–493 (2012).

  6. 6

    Sizova, E., Gerya, T., Brown, M. & Perchuk, L. L. Subduction styles in the Precambrian: Insight from numerical experiments. Lithos 116, 209–229 (2010).

  7. 7

    Thompson, D. A. et al. Precambrian crustal evolution: Seismic constraints from the Canadian Shield. Earth Planet. Sci. Lett. 297, 655–666 (2010).

  8. 8

    Griffin, W. L., O’Reilly, S. Y., Afonso, J. C. & Begg, G. C. The composition and evolution of lithospheric mantle: A re-evaluation and its tectonic implications. J. Petrol. 50, 1185–1204 (2009).

  9. 9

    Petrescu, L., Bastow, I. D., Darbyshire, F., Levin, V. & Menke, W. in AGU 2014 Fall Meeting abstr. T23B-4655 (AGU, 2014)

  10. 10

    Darbyshire, F. A., Eaton, D. W., Frederiksen, A. W. & Ertolahti, L. New insights into the lithosphere beneath the Superior Province from Rayleigh wave dispersion and receiver function analysis. Geophys. J. Int. 169, 1043–1068 (2007).

  11. 11

    Christensen, N. I. Poisson’s ratio and crustal seismology. J. Geophys. Res. 101, 3139–3156 (1996).

  12. 12

    Zandt, G. & Ammon, C. J. Continental crust composition constrained by measurements of crustal Poisson’s ratio. Nature 374, 152–154 (1995).

  13. 13

    Tugume, F., Nyblade, A., Julià, J. & van der Meijde, M. Precambrian crustal structure in Africa and Arabia: Evidence lacking for secular variation. Tectonophysics 609, 250–266 (2013).

  14. 14

    Borah, K. et al. Preserved and modified mid-Archean crustal blocks in Dharwar craton: Seismological evidence. Precambr. Res. 246, 16–34 (2014).

  15. 15

    Youssof, M., Thybo, H., Artemieva, I. M. & Levander, A. Moho depth and crustal composition in Southern Africa. Tectonophysics 609, 267–287 (2013).

  16. 16

    Delph, J. R. & Porter, R. C. Crustal structure beneath southern Africa: Insight into how tectonic events affect the Mohorovičić discontinuity. Geophys. J. Int. 200, 254–264 (2015).

  17. 17

    de Wit, M. J. On Archean granites, greenstones, cratons and tectonics: Does the evidence demand a verdict? Precambr. Res. 91, 181–226 (1998).

  18. 18

    Van Kranendonk, M. J. et al. Making it Thick: A Volcanic Plateau Origin of Palaeoarchean Continental Lithosphere of the Pilbara and Kaapvaal Cratons Vol. 389 (Geological Society, London, Special Publications, 2014).

  19. 19

    De Wit, M. & Tinker, J. Crustal structures across the central Kaapvaal craton from deep-seismic reflection data. South Afr. J. Geol. 107, 185–206 (2004).

  20. 20

    Artemieva, I. M. & Thybo, H. EUNAseis: A seismic model for Moho and crustal structure in Europe, Greenland, and the North Atlantic region. Tectonophysics 609, 97–153 (2013).

  21. 21

    Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001).

  22. 22

    Huston, D. L., Blewett, R. S. & Champion, D. C. Australia through time: A summary of its tectonic and metallogenic evolution. Episodes 35, 23–43 (2012).

  23. 23

    Drummond, B. J. A review of crust/upper mantle structure in the Precambrian areas of Australia and implications for Precambrian crustal evolution. Precambr. Res. 40–41, 101–116 (1988).

  24. 24

    Clitheroe, G., Gudmundsson, O. & Kennett, B. L. N. The crustal thickness of Australia. J. Geophys. Res. 105, 13697–13713 (2000).

  25. 25

    Reading, A. M., Kennett, B. L. N. & Goleby, B. New constraints on the seismic structure of West Australia: Evidence for terrane stabilization prior to the assembly of an ancient continent? Geology 35, 379–382 (2007).

  26. 26

    Kennett, B. L. N., Salmon, M., Saygin, E. & Group, A. W. AusMoho: The variation of Moho depth in Australia. Geophys. J. Int. 187, 946–958 (2011).

  27. 27

    Aitken, A. R. A., Salmon, M. L. & Kennett, B. L. N. Australia’s Moho: A test of the usefulness of gravity modelling for the determination of Moho depth. Tectonophysics 609, 468–479 (2013).

  28. 28

    Zhu, L. & Kanamori, H. Moho depth variation in southern California from teleseismic receiver functions. J. Geophys. Res. 105, 2969–2980 (2000).

  29. 29

    Yuan, H., Dueker, K. & Stachnik, J. Crustal structure and thickness along the Yellowstone hot spot track: Evidence for lower crustal outflow from beneath the eastern Snake River Plain. Geochem. Geophys. Geosyst. 11, Q03009 (2010).

  30. 30

    Chevrot, S. & van der Hilst, R. D. The Poisson ratio of the Australian crust; geological and geophysical implications. Earth Planet. Sci. Lett. 183, 121–132 (2000).

  31. 31

    Cassidy, K. F. et al. A Revised Geological Framework for the Yilgarn Craton, Western Australia 8 (Geological Survey of Western Australia, 2006).

  32. 32

    Zegers, T. E. & van Keken, P. E. Middle Archean continent formation by crustal delamination. Geology 29, 1083–1086 (2001).

  33. 33

    Bédard, J. H. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim. Cosmochim. Acta 70, 1188–1214 (2006).

  34. 34

    Rudnick, R. L. & Fountain, D. M. Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys. 33, 267–309 (1995).

  35. 35

    Wyche, S. et al. Isotopic constraints on stratigraphy in the central and eastern Yilgarn Craton, Western Australia. Aust. J. Earth Sci. 59, 657–670 (2012).

  36. 36

    Griffin, W. L., Belousova, E. A., Shee, S. R., Pearson, N. J. & O’Reilly, S. Y. Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambr. Res. 131, 231–282 (2004).

  37. 37

    Wilde, S. A., Middleton, M. F. & Evans, B. J. Terrane accretion in the southwestern Yilgarn Craton: Evidence from a deep seismic crustal profile. Precambr. Res. 78, 179–196 (1996).

  38. 38

    Czarnota, K. et al. Geodynamics of the eastern Yilgarn Craton. Precambr. Res. 183, 175–202 (2010).

  39. 39

    Korsch, R. J., Kositcin, N. & Champion, D. C. Australian island arcs through time: Geodynamic implications for the Archean and Proterozoic. Gondwana Res. 19, 716–734 (2011).

  40. 40

    Barley, M. E., Brown, S. J. A., Krapež, B. & Kositcin, N. Physical volcanology and geochemistry of a Late Archaean volcanic arc: Kurnalpi and Gindalbie Terranes, Eastern Goldfields Superterrane, Western Australia. Precambr. Res. 161, 53–76 (2008).

  41. 41

    Morris, P. A. & Kirkland, C. L. Melting of a subduction-modified mantle source: A case study from the Archean Marda Volcanic Complex, central Yilgarn Craton, Western Australia. Lithos 190–191, 403–419 (2014).

  42. 42

    Van Kranendonk, M. J., Ivanic, T. J., Wingate, M. T. D., Kirkland, C. L. & Wyche, S. Long-lived, autochthonous development of the Archean Murchison Domain, and implications for Yilgarn Craton tectonics. Precambr. Res. 229, 49–92 (2013).

  43. 43

    Hickman, A. & Van Kranendonk, M. J. Early Earth evolution: Evidence from the 3.5–1.8 Ga geological history of the Pilbara region of Western Australia. Episodes 35, 283–297 (2012).

  44. 44

    Dhuime, B., Hawkesworth, C. J., Cawood, P. A. & Storey, C. D. A change in the geodynamics of continental growth 3 Billion years ago. Science 335, 1334–1336 (2012).

  45. 45

    Shirey, S. B. & Richardson, S. H. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333, 434–436 (2011).

  46. 46

    O’Neill, C. & Debaille, V. The evolution of Hadean–Eoarchaean geodynamics. Earth Planet. Sci. Lett. 406, 49–58 (2014).

  47. 47

    Smithies, R. H., Champion, D. C., Van Kranendonk, M. J., Howard, H. M. & Hickman, A. H. Modern-style subduction processes in the Mesoarchaean: Geochemical evidence from the 3.12 Ga Whundo intra-oceanic arc. Earth Planet. Sci. Lett. 231, 221–237 (2005).

  48. 48

    Champion, D. C. Neodymium Depleted Mantle Model Age Map of Australia: Explanatory Notes and User Guide (Geoscience Australia, 2013).

  49. 49

    Johnson, T. E., Brown, M., Kaus, B. J. P. & VanTongeren, J. A. Delamination and recycling of Archaean crust caused by gravitational instabilities. Nature Geosci. 7, 47–52 (2014).

  50. 50

    Christensen, N. I. & Mooney, W. D. Seismic velocity structure and composition of the continental crust; a global view. J. Geophys. Res. 100, 9761–9788 (1995).

  51. 51

    van der Hilst, R. D., Kennett, B. L. N., Christie, D. & Grant, J. Project SKIPPY explores the mantle and lithosphere beneath Australia. EOS Trans. Am. Geophys. Union 75, 180–191 (1994).

  52. 52

    Bostock, M. G. Mantle stratigraphy and evolution of the Slave province. J. Geophys. Res. 103, 21183–21200 (1998).

  53. 53

    Salmon, M., Kennett, B. L. N. & Saygin, E. Australian Seismological Reference Model (AuSREM): Crustal component. Geophys. J. Int. 192, 190–206 (2013).

  54. 54

    Park, J. & Levin, V. Receiver functions from multiple-taper spectral correlation estimates. Bull. Seismol. Soc. Am. 90, 1507–1520 (2000).

  55. 55

    Helffrich, G. Extended-time multitaper frequency domain cross-correlation receiver-function estimation. Bull. Seismol. Soc. Am. 96, 344–347 (2006).

  56. 56

    Lekic, V., French, S. W. & Fischer, K. M. Lithospheric thinning beneath rifted regions of southern California. Science 334, 783–787 (2011).

  57. 57

    Park, J., Yuan, H. & Levin, V. Subduction zone anisotropy beneath Corvallis, Oregon: A serpentinite skid mark of trench-parallel terrane migration? J. Geophys. Res. 109, B10306 (2004).

  58. 58

    Nair, S. K., Gao, S. S., Liu, K. H. & Silver, P. G. Southern African crustal evolution and composition: Constraints from receiver function studies. J. Geophys. Res. 111, B02304 (2006).

  59. 59

    Bastow, I. D. et al. Precambrian plate tectonics: Seismic evidence from northern Hudson Bay. Geology G31396, 91–94 (2010).

  60. 60

    Stachnik, J. C., Dueker, K., Schutt, D. L. & Yuan, H. Imaging Yellowstone plume–lithosphere interactions from inversion of ballistic and diffusive Rayleigh wave dispersion and crustal thickness data. Geochem. Geophys. Geosyst. 9, Q06004 (2008).

  61. 61

    Kennett, B. L. N. & Engdahl, E. R. Traveltimes for global earthquake location and phase identification. Geophys. J. Int. 105, 429–465 (1991).

  62. 62

    Efron, B. & Tibshitani, R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1, 54–77 (1986).

  63. 63

    Korsch, R. J. et al. in Yilgarn Craton-Officer Basin-Musgrave Province Seismic and MT Workshop (ed. Neumann, N. L.) (Geoscience Australia, 2013).

  64. 64

    Kennett, B. L. N., Saygin, E., Fomin, T. & Blewett, R. S. Deep Crustal Seismic Reflection Profiling: Australia 1978–2011 (ANU E Press and Commonwealth of Australia (Geoscience Australia), 2013).

  65. 65

    Kennett, B. L. N. & Saygin, E. The nature of the Moho in Australia from reflection profiling: A review. GeoResJ 5, 74–91 (2015).

Download references

Acknowledgements

I thank the Research School of Earth Sciences at the Australian National University and the IRIS DMC for providing the seismic data; B. Kennett and M. Salmon (ANU) for sharing and discussion on the AuSREM model; and A. Aitken (UWA) for sharing the gravity inversion results. Discussions with the following colleagues are acknowledged: A. Hickman, H. Smithies, S. Johnson and K. Gessner of the GSWA for the WA Archaean tectonics; K. Czarnota (Geoscience Australia) for WA isotopic ages and pointing to the Champion 2013 age data set; and R. Fischer (ETH) for Archaean geodynamics and pointing to the Sizova et al. 2010 paper. I thank W. L. Griffin and S. O’Reilly for suggestions and comments on an early version of the manuscript. This is contribution 649 from the ARC Centre of Excellence for Core to Crust Fluid Systems (http://www.ccfs.mq.edu.au). This paper is published with permission of the Executive Director of the Geological Survey of Western Australia.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Huaiyu Yuan.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 11642 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuan, H. Secular change in Archaean crust formation recorded in Western Australia. Nature Geosci 8, 808–813 (2015). https://doi.org/10.1038/ngeo2521

Download citation

Further reading