Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake

Abstract

Large earthquakes are thought to release strain on previously locked faults. However, the details of how earthquakes are initiated, grow and terminate in relation to pre-seismically locked and creeping patches is unclear1,2,3,4. The 2015 Mw 7.8 Gorkha, Nepal earthquake occurred close to Kathmandu in a region where the prior pattern of fault locking is well documented5. Here we analyse this event using seismological records measured at teleseismic distances and Synthetic Aperture Radar imagery. We show that the earthquake originated northwest of Kathmandu within a cluster of background seismicity that fringes the bottom of the locked portion of the Main Himalayan Thrust fault (MHT). The rupture propagated eastwards for about 140 km, unzipping the lower edge of the locked portion of the fault. High-frequency seismic waves radiated continuously as the slip pulse propagated at about 2.8 km s−1 along this zone of presumably high and heterogeneous pre-seismic stress at the seismic–aseismic transition. Eastward unzipping of the fault resumed during the Mw 7.3 aftershock on 12 May. The transfer of stress to neighbouring regions during the Gorkha earthquake should facilitate future rupture of the areas of the MHT adjacent and updip of the Gorkha earthquake rupture.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Seismotectonic context of the 2015 Mw 7.8 Gorkha earthquake.
Figure 2: Seismic rupture kinematics.
Figure 3: Time snapshot of seismic rupture evolution.

Similar content being viewed by others

References

  1. Schurr, B. et al. Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature 512, 299–302 (2014).

    Article  Google Scholar 

  2. Loveless, J. P. & Meade, B. J. Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 Mw = 9.0 Tohoku-oki earthquake. Geophys. Res. Lett. 38, L17306 (2011).

    Article  Google Scholar 

  3. Yue, H. et al. The 5 September 2012 Nicoya, Costa Rica Mw 7.6 earthquake rupture process from joint inversion of high-rate GPS, strong-motion, and teleseismic P wave data and its relationship to adjacent plate boundary interface properties. J. Geophys. Res. 118, 5453–5466 (2013).

    Article  Google Scholar 

  4. Kaneko, Y., Avouac, J. P. & Lapusta, N. Towards inferring earthquake patterns from geodetic observations of interseismic coupling. Nature Geosci. 3, 363–369 (2010).

    Article  Google Scholar 

  5. Ader, T. et al. Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard. J. Geophys. Res. 117, B04403 (2012).

    Article  Google Scholar 

  6. Pandey, M. R., Tandukar, R. P., Avouac, J. P., Lave, J. & Massot, J. P. Interseismic strain accumulation on the Himalaya crustal ramp (Nepal). Geophys. Res. Lett. 22, 751–754 (1995).

    Article  Google Scholar 

  7. M7.8–36 km E of Khudi, Nepal. USGS (2015); http://earthquake.usgs.gov/earthquakes/eventpage/us20002926#general_summary

  8. Lavé, J. & Avouac, J. P. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. J. Geophys. Res. 105, 5735–5770 (2000).

    Article  Google Scholar 

  9. M7.3–19 km SE of Kodari, Nepal. USGS (2015); http://earthquake.usgs.gov/earthquakes/eventpage/us20002ejl#general_summary

  10. Nabelek, J. et al. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB Experiment. Science 325, 1371–1374 (2009).

    Article  Google Scholar 

  11. Lemonnier, C. et al. Electrical structure of the Himalaya of Central Nepal: High conductivity around the mid-crustal ramp along the MHT. Geophys. Res. Lett. 26, 3261–3264 (1999).

    Article  Google Scholar 

  12. Bilham, R. et al. GPS measurements of present-day convergence across the Nepal Himalaya. Nature 386, 61–64 (1997).

    Article  Google Scholar 

  13. Ishii, M., Shearer, P. M., Houston, H. & Vidale, J. E. Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array. Nature 435, 933–936 (2005).

    Article  Google Scholar 

  14. Ji, C., Wald, D. & Helmberger, D. V. Source Description of the 1999 Hector Mine, California Earthquake, Part I: Wavelet Domain Inversion Theory and Resolution Analysis. Bull. Seismol. Soc. Am. 92, 1192–1207 (2002).

    Article  Google Scholar 

  15. Cattin, R. & Avouac, J. P. Modeling mountain building and the seismic cycle in the Himalaya of Nepal. J. Geophys. Res. 105, 13389–13407 (2000).

    Article  Google Scholar 

  16. Ide, S., Imanishi, K., Yoshida, Y., Beroza, G. C. & Shelly, D. R. Bridging the gap between seismically and geodetically detected slow earthquakes. Geophys. Res. Lett. 35, L10305 (2008).

    Article  Google Scholar 

  17. Lay, T. et al. Depth-varying rupture properties of subduction zone megathrust faults. J. Geophys. Res. 117, B04311 (2012).

    Article  Google Scholar 

  18. Mugnier, J. L. et al. Structural interpretation of the great earthquakes of the last millennium in the central Himalaya. Earth Sci. Rev. 127, 30–47 (2013).

    Article  Google Scholar 

  19. Ambraseys, N. N. & Douglas, J. Magnitude calibration of north Indian earthquakes. Geophys. J. Int. 159, 165–206 (2004).

    Article  Google Scholar 

  20. Bilham, R. Location and magnitude of the 1833 Nepal earthquake and its relation to the rupture zones of contiguous great Himalayan earthquakes. Curr. Sci. 69, 101–128 (1995).

    Google Scholar 

  21. Lavé, J. et al. Evidence for a great medieval earthquake (approximate to 1100 AD) in the Central Himalayas, Nepal. Science 307, 1302–1305 (2005).

    Article  Google Scholar 

  22. Kumar, S. et al. Paleoseismic evidence of great surface-rupture earthquakes along the Indian Himalaya. J. Geophys. Res. 111, B03304 (2006).

    Google Scholar 

  23. Sapkota, S. N. et al. Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nature Geosci. 6, 71–76 (2013).

    Article  Google Scholar 

  24. Bollinger, L. et al. Estimating the return times of great Himalayan earthquakes in eastern Nepal: Evidence from the Patu and Bardibas strands of the Main frontal thrust. J. Geophys. Res. 119, 7123–7163 (2014).

    Article  Google Scholar 

  25. Lapusta, N., Rice, J. R., Ben-Zion, Y. & Zheng, G. T. Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate- and state-dependent friction. J. Geophys. Res. 105, 23765–23789 (2000).

    Article  Google Scholar 

  26. Bürgmann, R. et al. Interseismic coupling and asperity distribution along the Kamchatka subduction zone. J. Geophys. Res. 110, B07405 (2005).

    Article  Google Scholar 

  27. Rajendran, C. P., John, B. & Rajendran, K. Medieval pulse of great earthquakes in the central Himalaya: Viewing past activities on the frontal thrust. J. Geophys. Res. 120, 1623–1641 (2015).

    Article  Google Scholar 

  28. Bilham, R. & Wallace, K. Future Mw > 8 earthquakes in the Himalaya: Implications from the 26 Dec 2004 Mw = 9.0 earthquake on India’s eastern plate margin. Geol. Surv. India 85, 1–14 (2005).

    Google Scholar 

  29. Yule, D., Dawson, S., Lave, J., Sapkota, S. & Tiwari, D. AGU Fall Meeting Abstract #S33C-05 (AGU, 2006).

    Google Scholar 

  30. Rajaure, S. et al. Pandey. Double difference relocation of local earthquakes in the Nepal Himalaya. J. Nepal Geol. Soc. 46, 133–142 (2013).

    Google Scholar 

  31. Vandecar, J. C. & Crosson, R. S. Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least-squares. Bull. Seismol. Soc. Am. 80, 150–169 (1990).

    Google Scholar 

  32. Meng, L. S., Inbal, A. & Ampuero, J. P. A window into the complexity of the dynamic rupture of the 2011 Mw 9 Tohoku-Oki earthquake. Geophys. Res. Lett. 38, L00G07 (2011).

    Article  Google Scholar 

  33. Meng, L., Ampuero, J. P., Sladen, A. & Rendon, H. High-resolution backprojection at regional distance: Application to the Haiti M7.0 earthquake and comparisons with finite source studies. J. Geophys. Res. 117, B04313 (2012).

    Google Scholar 

  34. Meng, L. S., Ampuero, J. P., Luo, Y. D., Wu, W. B. & Ni, S. D. Mitigating artifacts in back-projection source imaging with implications for frequency-dependent properties of the Tohoku-Oki earthquake. Earth Planets Space 64, 1101–1109 (2012).

    Article  Google Scholar 

  35. De Zan, F. & Guarnieri, A. M. TOPSAR: Terrain observation by progressive scans. IEEE Trans. Geosci. Remote Sens. 44, 2352–2360 (2006).

    Article  Google Scholar 

  36. Wegmuller, U. & Werner, C. in Proc. Third ERS Symp. Space Service Environment Vol. III, 1687–1692 (Special Publications 414, ESA, 1997).

    Google Scholar 

  37. Michel, R., Avouac, J. P. & Taboury, J. Measuring ground displacements from SAR amplitude images: Application to the Landers earthquake. Geophys. Res. Lett. 26, 875–878 (1999).

    Article  Google Scholar 

  38. Wang, T., Jonsson, S. & Hanssen, R. F. Improved SAR Image Coregistration Using Pixel-Offset Series. IEEE Geosci. Remote Sens. Lett. 11, 1465–1469 (2014).

    Article  Google Scholar 

  39. Jonsson, S., Zebker, H., Segall, P. & Amelung, F. Fault slip distribution of the 1999 Mw 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements. Bull. Seismol. Soc. Am. 92, 1377–1389 (2002).

    Article  Google Scholar 

  40. Bamler, R. & Eineder, M. Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and Delta-k SAR systems. IEEE Geosci. Remote Sens. Lett. 2, 151–155 (2005).

    Article  Google Scholar 

  41. Tinti, E., Bizzarri, A. & Cocco, M. Modeling the dynamic rupture propagation on heterogeneous faults with rate- and state-dependent friction. Ann. Geophys. 48, 327–345 (2005).

    Google Scholar 

  42. Mahesh, P. et al. One-dimensional reference velocity model and precise locations of earthquake hypocenters in the Kumaon-Garhwal Himalaya. Bull. Seismol. Soc. Am. 103, 328–339 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

Sentinel-1A data are provided by the European Space Agency. T.W. thanks J. Kim from SMU for help in processing the SAR data. We also thank R. Bürgmann for comments on an earlier version of this study. J.-Ph.A. thanks the BP Foundation and the Royal Society for support.

Author information

Authors and Affiliations

Authors

Contributions

J.-Ph.A. coordinated the research and wrote the article. L.M. and J.-P.A. carried out the back-projection. S.W. carried out the finite source modelling. T.W. carried out the SAR offset measurements. All authors contributed to the interpretation and writing of the article.

Corresponding author

Correspondence to Jean-Philippe Avouac.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avouac, JP., Meng, L., Wei, S. et al. Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nature Geosci 8, 708–711 (2015). https://doi.org/10.1038/ngeo2518

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2518

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing