Soil carbon storage controlled by interactions between geochemistry and climate

Abstract

Soils are an important site of carbon storage1. Climate is generally regarded as one of the primary controls over soil organic carbon1,2, but there is still uncertainty about the direction and magnitude of carbon responses to climate change. Here we show that geochemistry, too, is an important controlling factor for soil carbon storage. We measured a range of soil and climate variables at 24 sites along a 4,000-km-long north–south transect of natural grassland and shrubland in Chile and the Antarctic Peninsula, which spans a broad range of climatic and geochemical conditions. We find that soils with high carbon content are characterized by substantial adsorption of carbon compounds onto mineral soil and low rates of respiration per unit of soil carbon; and vice versa for soils with low carbon content. Precipitation and temperature were only secondary predictors for carbon storage, respiration, residence time and stabilization mechanisms. Correlations between climatic variables and carbon variables decreased significantly after removing relationships with geochemical predictors. We conclude that the interactions of climatic and geochemical factors control soil organic carbon storage and turnover, and must be considered for robust prediction of current and future soil carbon storage.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: SOC response variables in geographical context.
Figure 2: Partial correlations between SOC response and climatic variables.

References

  1. 1

    Carvalhais, N. et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 514, 213–217 (2014).

  2. 2

    Shao, P., Zeng, Z., Moore, D. J. P. & Zeng, X. Soil microbial respiration from observations and earth system models. Environ. Res. Lett. 8, 034034 (2013).

  3. 3

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

  4. 4

    Nie, M. et al. Positive climate feedbacks of soil microbial communities in a semi-arid grassland. Ecol. Lett. 16, 234–241 (2013).

  5. 5

    Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84 (2014).

  6. 6

    Feng, X., Simpson, A. J., Wilson, K. P., Williams, D. D. & Simpson, M. J. Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nature Geosci. 1, 836–839 (2008).

  7. 7

    Chen, S., Huang, Y., Zou, J. & Shi, Y. Mean residence time of global topsoil organic carbon depends on temperature, precipitation and soil nitrogen. Glob. Planet. Change 100, 99–108 (2013).

  8. 8

    Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E. & Pacala, S. W. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2 . Nature Clim. Change 4, 1099–1102 (2014).

  9. 9

    Tang, J. & Riley, W. J. Weaker soil carbon-climate feedbacks resulting from microbial and abiotic interactions. Nature Clim. Change 5, 56–60 (2015).

  10. 10

    Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M. & Hendricks, D. M. Mineral control of soil organic carbon storage and turnover. Nature 389, 170–173 (1997).

  11. 11

    Trumbore, S. E. & Torn, M. S. in Soils and Global Change (ed. Holland, E. A.) 1–34 (NATO Advanced Study Institute, 2003).

  12. 12

    Norton, K. P., Molnar, P. & Schlunegger, F. The role of climate-driven chemical weathering on soil production. Geomorphology 204, 510–517 (2014).

  13. 13

    Ruiz, I. Praderas Para Chile [in Spanish] (Ministerio de Agricultura, 1996).

  14. 14

    Barcikowski, A., Lyżwtníska, R. & Zarzycki, K. Growth rate and biomass production of Deschampsia antarctica Desv. in the Admiralty Bay region, South Shetland Islands, Antarctica. Pol. Polar Res. 20, 301–311 (1999).

  15. 15

    Dosseto, A., Buss, H. L. & Suresh, P. O. Rapid regolith formation over volcanic bedrock and implications for landscape evolution. Earth Planet. Sci. Lett. 337–338, 47–55 (2012).

  16. 16

    Goudie, A. S. & Viles, H. in Quaternary and Recent Processes and Forms Vol. 4 (eds Burt, T. P., Chorley, R. J., Brunsden, D., Cox, N. J. & Goudie, A. S.) 129–164 (Geological Society of London, 2008).

  17. 17

    Gislason, S. R. et al. Direct evidence of the feedback between climate and weathering. Earth Planet. Sci. Lett. 277, 213–222 (2009).

  18. 18

    Riley, W. J. et al. Long residence times of rapidly decomposable soil organic matter: Application of a multi-phase, multi-component, and vertically-resolved model (BAMS1) to soil carbon dynamics. Geosci. Model Dev. 7, 1335–1355 (2014).

  19. 19

    Six, J., Conant, R. T., Paul, E. A. & Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 241, 155–176 (2002).

  20. 20

    von Luetzow, M. et al. Stabilization of organic matter in temperate soils, mechanisms and their relevance under different soil conditions—a review. Eur. J. Soil Sci. 57, 426–445 (2006).

  21. 21

    Zhou, T., Phi, P., Hui, D. & Luo, Y. Global pattern of temperature sensitivity of soil heterotrophic respiration and its implications for carbon-climate feedback. J. Geophys. Res. 114, G02016 (2009).

  22. 22

    Bannister, J. R., Vidal, O. J., Teneb, E. & Sandoval, V. Latitudinal patterns and regionalization of plant diversity along a 4270-km gradient in continental Chile. Aust. Ecol. 37, 500–509 (2012).

  23. 23

    Xu, X., Zhou, Y., Ruan, H., Luo, Y. & Wang, J. Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains, China. Soil Biol. Biochem. 42, 1811–1815 (2010).

  24. 24

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

  25. 25

    Mardones, M. in Historia, Biodiversidad y Ecología de los Bosques Costeros de Chile [in Spanish] (eds Smith-Ramirez, C., Armesto, J. & Valdovinos, C.) 39–59 (Editorial Universitaria, 2005).

  26. 26

    Luebert, F. & Pliscoff, P. Sinopsis Bioclimática y Vegetacional de Chile [in Spanish] (Editorial Universitaria, 2006).

  27. 27

    Hendershot, W. H., Lalande, H. & Duquette, M. in Soil Sampling and Methods of Analysis (ed. Carter, M. R.) 167–176 (Lewis Publishers, 1993).

  28. 28

    Bouyoucos, G. J. Hydrometer method improved for making particle size analysis of soils. Agron. J. 54, 464–465 (1962).

  29. 29

    Herbillon, A. J. in Proc. 8th Int. Soil Classification Workshop (eds Beinroth, F. H., Camargo, M. N. & Eswaran, H.) 39–48 (EMBRAPA-SNLCS, 1986).

  30. 30

    Paul, E. A., Morris, S. J. & Boehm, S. in Assessment Methods for Soil Carbon (Advances in Soil Science) (eds Lal, R., Kimble, J. M., Follett, R. F. & Stewart, B. A.) 193–206 (CRC/Lewis Publishers, 2001).

  31. 31

    Stewart, C. E., Paustian, K., Plante, A. F., Conant, R. T. & Six, J. Soil carbon saturation: Linking concept and measurable carbon pools. Soil Sci. Soc. Am. J. 72, 379–392 (2008).

  32. 32

    Zimmermann, M., Leitfeld, J., Abiven, S., Schmidt, M. W. I. & Fuhrer, J. Sodium hypochlorite separates an older soil organic matter fraction than acid hydrolysis. Geoderma 139, 171–179 (2007).

  33. 33

    Mikutta, R. & Kaiser, K. Organic matter bound to mineral surfaces: Resistance to chemical and biological oxidation. Soil Biol. Biochem. 43, 1738–1741 (2011).

  34. 34

    R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014); http://www.R-project.org

  35. 35

    Quinlan, J. R. Proc. 5th Austral. Join. Con. Art. Intel. 343–348 (World Scientific, 1992).

  36. 36

    Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning (Springer, 2009).

Download references

Acknowledgements

This research was financed within the framework of the BELSPO IUAP project No. P7-P24 ‘SOGLO- Soils under Global change’ (Belgium). Further funding was provided in Chile by FONDECYT 1121138 and 1120895 and Instituto Antártico Chileno, INACH FR0112 for sampling campaigns in Chile and the Antarctic Peninsula. K.V.O. is a Research Associate of the Fonds de la Recherche Scientifique (FNRS), Belgium.

Author information

Affiliations

Authors

Contributions

S.D., P.B. and E.Z.V. designed the research. E.Z.V., M.C.P., A.C.-K. and C.M. conducted sampling campaigns. S.D., A.S. and M.B. collected and analysed the data. S.D., P.B. and J.S. interpreted the data. All authors contributed to the writing of the paper.

Corresponding author

Correspondence to Sebastian Doetterl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2046 kb)

Supplementary Information

Supplementary Information (HTML 1297 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Doetterl, S., Stevens, A., Six, J. et al. Soil carbon storage controlled by interactions between geochemistry and climate. Nature Geosci 8, 780–783 (2015). https://doi.org/10.1038/ngeo2516

Download citation

Further reading