Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Substantial glacier mass loss in the Tien Shan over the past 50 years

Abstract

Populations in Central Asia are heavily dependent on snow and glacier melt for their water supplies. Changes to the glaciers in the main mountain range in this region, the Tien Shan, have been reported over the past decade. However, reconstructions over longer, multi-decadal timescales and the mechanisms underlying these variations—both required for reliable future projections—are not well constrained. Here we use three ensembles of independent approaches based on satellite gravimetry, laser altimetry, and glaciological modelling to estimate the total glacier mass change in the Tien Shan. Results from the three approaches agree well, and allow us to reconstruct a consistent time series of annual mass changes for the past 50 years at the resolution of individual glaciers. We detect marked spatial and temporal variability in mass changes. We estimate the overall decrease in total glacier area and mass from 1961 to 2012 to be 18 ± 6% and 27 ± 15%, respectively. These values correspond to a total area loss of 2,960 ± 1,030 km2, and an average glacier mass-change rate of −5.4 ± 2.8 Gt yr−1. We suggest that the decline is driven primarily by summer melt and, possibly, linked to the combined effects of general climatic warming and circulation variability over the north Atlantic and north Pacific.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Spatially distributed glacier mass change rates in the Tien Shan.
Figure 2: Derivation of GRACE-based estimates.
Figure 3: Regional glacier mass-change rates over 2003–2009.
Figure 4: Derivation of ICESat-based estimates.
Figure 5: Validation of model-derived estimates.
Figure 6: Time series of annual glacier mass changes in the Tien Shan.

References

  1. Jansson, P., Hock, R. & Schneider, T. The concept of glacier storage: A review. J. Hydrol. 282, 116–129 (2003).

    Article  Google Scholar 

  2. Viviroli, D., Dürr, H., Messerli, B. & Meybeck, M. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Wat. Resour. Res. 43, W07447 (2007).

    Article  Google Scholar 

  3. Immerzeel, W., van Beek, L. & Bierkens, M. Climate change will affect the Asian water towers. Science 328, 1382–1385 (2010).

    Article  Google Scholar 

  4. Bolch, T. et al. The state and fate of Himalayan Glaciers. Science 336, 310–314 (2012).

    Article  Google Scholar 

  5. Kaser, G., Großhauser, M. & Marzeion, B. Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl Acad. Sci. USA 107, 20223–20227 (2010).

    Article  Google Scholar 

  6. Immerzeel, W. & Bierkens, M. Asia’s water balance. Nature Geosci. 5, 841–842 (2012).

    Article  Google Scholar 

  7. AQUASTAT Database (Food and Agriculture Organization of the United Nations, accessed 14 July 2015); http://www.fao.org/nr/water/aquastat/data/query/index.html

  8. Dorian, J. P. Central Asia: A major emerging energy player in the 21st century. Energy Policy 34, 544–555 (2006).

    Article  Google Scholar 

  9. Lutz, W., Sanderson, W. & Scherbov, S. IIASA’s 2007 Probabilistic World Population Projections; IIASA World Population Program Online Data Base of Results 2008 (IIASA, accessed 14 July 2015); http://webarchive.iiasa.ac.at/Research/POP/proj07/index.html

    Google Scholar 

  10. Sorg, A., Bolch, T., Stoffel, M., Solomina, O. & Beniston, M. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nature Clim. Change 2, 725–731 (2012).

    Article  Google Scholar 

  11. Unger-Shayesteh, K. et al. What do we know about past changes in the water cycle of Central Asian headwaters? A review. Glob. Planet. Change 110, 4–25 (2013).

    Article  Google Scholar 

  12. Glacier Mass Balance Bulletins Vols 1–12 (World Glacier Monitoring Service, 1988–2012); http://www.geo.uzh.ch/microsite/wgms/gmbb.html

  13. Aizen, V., Kuzmichenok, V., Surazakov, A. & Aizen, E. Glacier changes in the central and northern Tien Shan during the last 140 years based on surface and remote-sensing data. Ann. Glaciol. 43, 202–213 (2006).

    Article  Google Scholar 

  14. Pieczonka, T., Bolch, T., Junfeng, W. & Shiyin, L. Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery. Remote Sens. Environ. 130, 233–244 (2013).

    Article  Google Scholar 

  15. Pieczonka, T. & Bolch, T. Region-wide glacier mass budgets and area changes for the Central Tien Shan between 1975 and 1999 using Hexagon KH-9 imagery. Glob. Planet. Change 128, 1–13 (2015).

    Article  Google Scholar 

  16. Jacob, T., Wahr, J., Pfeffer, W. & Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 482, 514–518 (2012).

    Article  Google Scholar 

  17. Gardner, A. et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340, 852–857 (2013).

    Article  Google Scholar 

  18. Yi, S. & Sun, W. Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models. J. Geophys. Res. 119, 2504–2517 (2014).

    Article  Google Scholar 

  19. Schrama, E., Wouters, B. & Rietbroek, R. A mascon approach to assess ice sheet and glacier mass balances and their uncertainties from GRACE data. J. Geophys. Res. 119, 6048–6066 (2014).

    Article  Google Scholar 

  20. Lioubimtseva, E. & Henebry, G. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptation. J. Arid Environ. 73, 963–977 (2009).

    Article  Google Scholar 

  21. Tapley, B., Bettadpur, S., Ries, J., Thompson, P. & Watkins, M. GRACE measurements of mass variability in the Earth system. Science 305, 503–505 (2004).

    Article  Google Scholar 

  22. Save, H., Bettadpur, S. & Tapley, B. Reducing errors in the GRACE gravity solutions using regularization. J. Geodesy 86, 695–711 (2012).

    Article  Google Scholar 

  23. Zwally, H. et al. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J. Geodyn. 34, 405–444 (2002).

    Article  Google Scholar 

  24. Moholdt, G., Nuth, C., Hagen, J. & Kohler, J. Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sens. Environ. 114, 2756–2767 (2010).

    Article  Google Scholar 

  25. Kääb, A., Berthier, E., Nuth, C., Gardelle, J. & Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488, 495–498 (2012).

    Article  Google Scholar 

  26. Neckel, N., Kropáček, J., Bolch, T. & Hochschild, V. Glacier mass changes on the Tibetan Plateau 2003-2009 derived from ICESat laser altimetry measurements. Environ. Res. Lett. 9, 014009 (2014).

    Article  Google Scholar 

  27. Zwally, H. et al. GLAS/ICESat L1B Global Elevation Data Version 33 (National Snow and Ice Data Center, 2011).

    Google Scholar 

  28. Huss, M. & Farinotti, D. Distributed ice thickness and volume of all glaciers around the globe. J. Geophys. Res. 117, F04010 (2012).

    Article  Google Scholar 

  29. Vaughan, D. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 317–382 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  30. Aizen, E., Aizen, V., Melack, J., Nakamura, T. & Ohta, T. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. Int. J. Climatol. 21, 535–556 (2001).

    Article  Google Scholar 

  31. Bothe, O., Fraedrich, K. & Zhu, X. Precipitation climate of Central Asia and the large-scale atmospheric circulation. Theor. Appl. Climatol. 108, 345–354 (2012).

    Article  Google Scholar 

  32. Mölg, T., Maussion, F. & Scherer, D. Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nature Clim. Change 4, 68–73 (2014).

    Article  Google Scholar 

  33. Branstator, G. Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Clim. 15, 1893–1910 (2002).

    Article  Google Scholar 

  34. Cao, M. Detection of abrupt changes in glacier mass balance in the Tien Shan Mountains. J. Glaciol. 44, 352–359 (1998).

    Article  Google Scholar 

  35. Cogley, J. in The Future of The World’s Climate (eds Henderson-Sellers, A. & McGuffie, K.) Ch. 8, 197–222(Elsevier, 2012).

    Book  Google Scholar 

  36. Oerlemans, J. Extracting a climate signal from 169 glacier records. Science 308, 675–677 (2005).

    Article  Google Scholar 

  37. Deser, C. & Phillips, A. Simulation of the 1976/77 climate transition over the North Pacific: Sensitivity to tropical forcing. J. Clim. 19, 6170–6180 (2006).

    Article  Google Scholar 

  38. Naito, N. in Encyclopedia of Snow, Ice and Glaciers (eds Singh, V., Singh, P. & Haritashya, U.) 1107–1108 (Springer, 2011).

    Book  Google Scholar 

  39. Lutz, A., Immerzeel, W., Gobiet, A., Pellicciotti, F. & Bierkens, M. Comparison of climate change signals in CMIP3 and CMIP5 multi-model ensembles and implications for Central Asian glaciers. Hydrol. Earth Syst. Sci. 17, 3661–3677 (2013).

    Article  Google Scholar 

  40. Pfeffer, W. & the Randolph Consortium. The Randolph glacier inventory: A globally complete inventory of glaciers. J. Glaciol. 60, 537–552 (2014).

    Article  Google Scholar 

  41. Wahr, J., Molenaar, M. & Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. 103, 30205–30229 (1998).

    Article  Google Scholar 

  42. Guo, J. et al. Green’s function of the deformation of the Earth as a result of atmospheric loading. Geophys. J. Int. 159, 53–68 (2004).

    Article  Google Scholar 

  43. Geruo, A., Wahr, J. & Zhong, S. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: An application to glacial isostatic adjustment in Antarctica and Canada. Geophys. J. Int. 192, 557–572 (2012).

    Google Scholar 

  44. Lambeck, K., Purcell, A., Zhao, J. & Svensson, N. The Scandinavian ice sheet: From MIS 4 to the end of the Last Glacial Maximum. Boreas 39, 410–435 (2010).

    Article  Google Scholar 

  45. Chen, J., Wilson, C. & Tapley, B. Interannual variability of Greenland ice losses from satellite gravimetry. J. Geophys. Res. 116, B07406 (2011).

    Article  Google Scholar 

  46. Jarvis, J., Reuter, H., Nelson, A. & Guevara, E. Hole-filled SRTM for The Globe CGIAR-CSI SRTM 90 m Database Version 4 (CGIAR Consortium for Spatial Information, 2008); http://srtm.csi.cgiar.org

    Google Scholar 

  47. Huss, M. Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 7, 877–887 (2013).

    Article  Google Scholar 

  48. Cogley, J. Present and future states of Himalaya and Karakoram glaciers. Ann. Glaciol. 52, 69–73 (2011).

    Article  Google Scholar 

  49. Hock, R. A distributed temperature-index ice- and snowmelt model including potential direct solar radiation. J. Glaciol. 45, 101–111 (1999).

    Article  Google Scholar 

  50. Oerlemans, J. Glaciers and Climate Change (A.A. Balkema Publishers, 2001).

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Swiss National Foundation and the German Federal Foreign Office, in the frame of the CAWa project (http://www.cawa-project.net) as part of the German Water Initiative for Central Asia (Berlin Process). D.D. was supported by the SuMaRiO project, funded by the German Ministry of Education and Research (BMBF, ref. no. LLA2-02). T.B. acknowledges funding by Deutsche Forschungsgemeinschaft (DFG, ref. no. BO 3199/2-1). We are indebted to H. Save, H. Steffen and T. Pieczonka for providing the regularized GRACE solutions, the GIA models and the glacier debris-cover mask, respectively.

Author information

Authors and Affiliations

Authors

Contributions

D.F., A.G. and S.V. conceived the study. L.L., A.G. and D.F. prepared the GRACE-based estimates. D.F. and G.M. designed and implemented the ICESat-based estimates. D.F., D.D. and T.B performed the glaciological modelling. T.M. and D.F. performed the climatological analyses. D.F., L.L. and T.M. prepared the manuscript and the figures. All authors contributed to the final form of the article.

Corresponding author

Correspondence to Daniel Farinotti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4868 kb)

Supplementary Information

Supplementary Information (TXT 803 kb)

Supplementary Information

Supplementary Information (TXT 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farinotti, D., Longuevergne, L., Moholdt, G. et al. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nature Geosci 8, 716–722 (2015). https://doi.org/10.1038/ngeo2513

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2513

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing