Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Carbon content and degassing history of the lunar volcanic glasses

Abstract

Volcanic glasses observed on the lunar surface have been interpreted as the products of volatile-rich, fire-fountain eruptions. Revised estimates of the water content of primitive lunar magmas have overturned the notion of a volatile-poor Moon1,2,3,4, but degassing of water-rich vapour during volcanic eruptions is inconsistent with geochemical and petrological observations5,6. Although degassing of carbon is compatible with observations, the amount of indigenous carbon in lunar volcanic materials is not well constrained. Here we present high-precision measurements of indigenous carbon contents in primitive lunar volcanic glasses and melt inclusions. From our measurements, in combination with solubility and degassing model calculations, we suggest that carbon degassed before water in lunar magmas, and that the amount of carbon in the lunar lavas was sufficient to trigger fire-fountain eruptions at the lunar surface. We estimate—after correcting for bubble formation in the melt inclusions—that the primitive carbon contents and hydrogen/carbon ratios of lunar magmas fall within the range found in melts from Earth’s depleted upper mantle7. Our findings are also consistent with measurements of hydrogen, fluorine, sulphur and chlorine contents, as well as carbon and hydrogen isotopes, in primitive lunar magmas2,3,4,8,9, suggesting a common origin for the volatile elements in the interiors of the Earth and Moon.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: C–H2O data for the lunar volcanic glass beads and melt inclusions.
Figure 2: C and H2O concentration profiles in individual A-15 yellow glass bead.
Figure 3: Solubility model and CO–H2O gas–melt saturation pressure.

References

  1. Saal, A. E. et al. Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454, 192–195 (2008).

    Article  Google Scholar 

  2. Hauri, E. H., Weinreich, T., Saal, A. E., Rutherford, M. C. & Van Orman, J. A. High pre-eruptive water contents preserved in lunar melt inclusions. Science 333, 213–215 (2011).

    Article  Google Scholar 

  3. Saal, A. E., Hauri, E. H., Van Orman, J. A. & Rutherford, M. J. Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage. Science 340, 1317–1320 (2013).

    Article  Google Scholar 

  4. Füri, E., Deloule, E., Gurenko, A. & Marty, B. New evidence for chondritic lunar water from combined D/H and noble gas analyses of single Apollo 17 volcanic glasses. Icarus 229, 109–120 (2014).

    Article  Google Scholar 

  5. Sharp, Z. D., Shearer, C. K., McKeegan, K. D., Barnes, J. D. & Wang, Y. Q. The chlorine isotope composition of the Moon and implications for an anhydrous mantle. Science 329, 1050–1053 (2010).

    Article  Google Scholar 

  6. Shearer, C. K. et al. Origin of sulfide replacement textures in lunar breccias. Implications for vapor element transport in the lunar crust. Geochim. Cosmochim. Acta 83, 138–158 (2012).

    Article  Google Scholar 

  7. Saal, A. E., Hauri, E. H., Langmuir, C. H. & Perfit, M. R. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419, 451–455 (2002).

    Article  Google Scholar 

  8. Epstein, S. & Taylor, H. P. Jr The isotopic composition and concentration of water, hydrogen, and carbon in some Apollo 15 and 16 soils and in the Apollo 17 orange soil. Geochim. Cosmochim. Acta 2, 1559–1575 (1973).

    Google Scholar 

  9. Hauri, E. H., Saal, A. E., Rutherford, M. C. & Van Orman, J. A. Water in the Moon’s interior: Truth and consequences. Earth Planet. Sci. Lett. 409, 252–264 (2015).

    Article  Google Scholar 

  10. Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012).

    Article  Google Scholar 

  11. Halliday, A. N. The origins of volatiles in the terrestrial planets. Geochim. Cosmochim. Acta 105, 146–171 (2013).

    Article  Google Scholar 

  12. Elkins-Tanton, L. T., Chatterjee, N. & Grove, T. L. Magmatic processes that produced lunar fire fountains. Geophys. Res. Lett. 30, 1513 (2003).

    Article  Google Scholar 

  13. Sato, M. The driving mechanism of lunar pyroclastic eruptions inferred from the oxygen fugacity behavior of Apollo 17 orange glass. Proc. Lunar Planet. Sci. Conf. 10, 311–325 (1979).

    Google Scholar 

  14. Rutherford, M. J. & Papale, P. Origin of basalt fire-fountain eruptions on Earth versus the Moon. Geology 37, 219–222 (2009).

    Article  Google Scholar 

  15. Fogel, R. A. & Rutherford, M. J. Magmatic volatiles in primitive lunar glasses: I. FTIR and EPMA analyses of Apollo 15 green and yellow glasses and revision of the volatile-assisted fire-fountain theory. Geochim. Cosmochim. Acta 59, 201–215 (1995).

    Article  Google Scholar 

  16. Nicholis, M. G. & Rutherford, M. J. Graphite oxidation in the Apollo 17 orange glass magma: Implications for the generation of a lunar volcanic gas phase. Geochim. Cosmochim. Acta 73, 5905–5917 (2009).

    Article  Google Scholar 

  17. Delano, J. W. Apollo 15 green glass—Chemistry and possible origin. Proc. Lunar Planet. Sci. Conf. 10, 275–300 (1979).

    Google Scholar 

  18. Dixon, J. E., Stolper, E. M. & Holloway, J. R. An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: Calibration and solubility models. J. Petrol. 36, 1607–1631 (1995).

    Google Scholar 

  19. Dixon, J. E. & Stolper, E. M. An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part II: Applications to degassing. J. Petrol. 36, 1633–1646 (1995).

    Google Scholar 

  20. Wetzel, D. T., Rutherford, M. J., Jacobsen, S. D., Hauri, E. H. & Saal, A. E. Degassing of reduced carbon from planetary basalts. Proc. Natl Acad. Sci. USA 110, 8010–8013 (2013).

    Article  Google Scholar 

  21. Newcombe, M. et al. Solubility and diffusivity of H-bearing species in lunar basaltic melts. Lunar Planet. Sci. Conf. 43, 2777 (2012).

    Google Scholar 

  22. Ardia, P., Hirschmann, M. M., Withers, A. C. & Stanley, B. D. Solubility of CH4 in a synthetic basaltic melt, with applications to atmosphere–magma ocean–core partitioning of volatiles and to the evolution of the Martian atmosphere. Geochim. Cosmochim. Acta 114, 52–71 (2013).

    Article  Google Scholar 

  23. Hirschmann, M. M., Withers, A. C., Ardia, P. & Foley, N. T. Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets. Earth Planet. Sci. Lett. 345–348, 38–48 (2012).

    Article  Google Scholar 

  24. Zhang, C. & Duan, Z. A model for C–O–H fluid in the Earth’s mantle. Geochim. Cosmochim. Acta 73, 2089–2102 (2009).

    Article  Google Scholar 

  25. Wieczorek, M. A. et al. The crust of the Moon as seen by GRAIL. Science 339, 671–675 (2013).

    Article  Google Scholar 

  26. Wilson, L. & Head, J. W. Deep generation of magmatic gas on the Moon and implications for pyroclastic eruptions. Geophys. Res. Lett. 30, 1605 (2003).

    Google Scholar 

  27. Hess, P. C. & Parmentier, E. M. Thermal evolution of a thicker KREEP liquid layer. J. Geophys. Res. 106, 28023–28032 (2001).

    Article  Google Scholar 

  28. Longhi, J., Walker, D. & Hays, J. F. The distribution of Fe and Mg between olivine and lunar basaltic liquids. Geochim. Cosmochim. Acta 42, 1545–1558 (1978).

    Article  Google Scholar 

  29. Exley, R. A., Mattey, D. P., Clague, D. A. & Pillinger, C. T. Carbon isotope systematics of a mantle “hotspot”: A comparison of Loihi Seamount and MORB glasses. Earth Planet. Sci. Lett. 78, 189–199 (1986).

    Article  Google Scholar 

  30. Koga, K., Hauri, E. H., Hirschmann, M. M. & Bell, D. Hydrogen concentration analyses using SIMS and FTIR: Comparison and calibration for nominally anhydrous minerals. Geochem. Geophys. Geosyst. 4, 1019 (2003).

    Article  Google Scholar 

  31. Hauri, E. H. et al. SIMS analysis of volatiles in silicate glasses: 1. Calibration, matrix effects and comparisons with FTIR. Chem. Geol. 183, 99–114 (2002).

    Article  Google Scholar 

  32. Silver, L. & Stolper, E. Water in albitic glasses. J. Petrol. 30, 667–709 (1989).

    Article  Google Scholar 

  33. Gaillard, F. & Scaillet, B. A theoretical framework for volcanic degassing chemistry in a comparative planetology perspective and implications for planetary atmospheres. Earth Planet. Sci. Lett. 403, 307–316 (2014).

    Article  Google Scholar 

  34. Vander Kaaden, K. E., Agee, C. B. & McCubbin, F. M. A comparison of melt density and compressibility of the green, yellow, and orange Apollo glasses as a function of TiO2 content. Lunar Planet. Sci. Conf. 43, 1584 (2012).

    Google Scholar 

  35. van Kan Parker, M. et al. Neutral buoyancy of titanium-rich melts in the deep lunar interior. Nature Geosci. 5, 186–189 (2012).

    Article  Google Scholar 

  36. Delano, J. W. Buoyancy-driven melt segregation in the Earth’s moon. I- Numerical results. Proc. Lunar Planet. Sci. Conf. 20, 3–12 (1990).

    Google Scholar 

  37. Uhlmann, D. R., Cukierman, M., Scherera, G. & Hopper, R. W. Viscous flow, crystallization behavior and thermal history of orange soil material. Eos Trans. Am. Geophys. Union 54, 617–618 (1973).

    Google Scholar 

  38. Chaussidon, M. & Robert, F. Lithium nucleosynthesis in the Sun inferred from the solar-wind 7Li/6Li ratio. Nature 402, 270–273 (1999).

    Article  Google Scholar 

  39. Hashizume, K., Chaussidon, M., Marty, B. & Terada, K. Protosolar carbon isotopic composition: Implications for the origin of meteoritic organics. Astrophys. J. 600, 480–484 (2004).

    Article  Google Scholar 

  40. Hashizume, K., Chaussidon, M., Marty, B. & Robert, F. Solar wind record on the Moon: Deciphering presolar from planetary nitrogen. Science 290, 1142–1145 (2000).

    Article  Google Scholar 

  41. Ozima, M. et al. Terrestrial nitrogen and noble gases in lunar soils. Nature 436, 655–659 (2005).

    Article  Google Scholar 

  42. Eugster, O., Terribilini, D., Polnau, E. & Kramers, J. The antiquity indicator argon-40/argon-36 for lunar surface samples calibrated by uranium-235-xenon-136 dating. Meteorit. Planet. Sci. 36, 1097–1115 (2001).

    Article  Google Scholar 

  43. Eugster, O. et al. The cosmic-ray exposure history of Shorty Crater samples—The age of Shorty Crater. Proc. Lunar Planet. Sci. Conf. 8, 3059–3082 (1977).

    Google Scholar 

  44. Podosek, F. A. & Huneke, J. C. Argon in Apollo 15 green glass spherules (15426): 40Ar–39Ar age and trapped argon. Earth Planet. Sci. Lett. 19, 413–421 (1973).

    Article  Google Scholar 

  45. Eugster, O., Groegler, N., Eberhardt, P., Geiss, J. & Kiesl, W. Double drive tube 74001/2—A two-stage exposure model based on noble gases, chemical abundances and predicted production rates. Proc. Lunar Planet. Sci. Conf. 12, 541–558 (1982).

    Google Scholar 

  46. Lakatos, S., Heymann, D. & Yaniv, A. Green spherules from Apollo 15: Inferences about their origin from inert gas measurements. The Moon 7, 132–148 (1973).

    Article  Google Scholar 

  47. Fleischer, R. L. & Hart, H. R. Jr Particle track record of Apollo 15 green soil and rock. Earth Planet. Sci. Lett. 18, 357–364 (1973).

    Article  Google Scholar 

  48. Spangler, R. R., Warasila, R. & Delano, J. W. 39Ar–40Ar ages for the Apollo 15 green and yellow volcanic glasses. J. Geophys. Res. 89, B487–B497 (1984).

    Article  Google Scholar 

  49. Spangler, R. R. & Delano, J. W. History of the Apollo 15 yellow impact glass and sample 15426 and 15427. J. Geophys. Res. 89, B478–B486 (1984).

    Article  Google Scholar 

  50. Kirsten, T., Horn, P., Heymann, D., Hubner, W. & Storzer, D. Apollo 17 crystalline rocks and soils: Rare gasses, ion track and ages. Eos Trans. Am. Geophys. Union 54, 595–597 (1973).

    Google Scholar 

  51. Schaeffer, O. A. & Husain, L. Isotopic ages of Apollo 17 lunar material. Eos Trans. Am. Geophys. Union 54, 614 (1973).

    Google Scholar 

  52. Hintenberger, H., Weber, H. W. & Schultz, L. Solar, spallogenic, and radiogenic rare gases in Apollo 17 soils and breccias. Proc. Lunar Planet. Sci. Conf. 5, 2005–2022 (1974).

    Google Scholar 

  53. Merlivat, L., Lelu, M., Nief, G. & Roth, E. Spallation deuterium in rock 70215. Proc. Lunar Planet. Sci. Conf. 7, 649–658 (1976).

    Google Scholar 

  54. Reedy, R. C. Cosmic-ray-produced stable nuclides: Various production rates and their implications. Proc. Lunar Planet. Sci. Conf. 12, 871–873 (1981).

    Google Scholar 

Download references

Acknowledgements

We thank J. Wang for careful attention to the health of the Carnegie NanoSIMS. This study was supported by NASA LASER to A.E.S. (NNX08AY97G) and to M.J.R. (NNX11AB27G), by NASA Cosmochemistry to A.E.S. (NNX12AH62G), by the NASA Solar System Exploration Research Virtual Institute (SSERVI) to Brown University (NNA14AB01A) Deep Carbon Observatory and by the Carnegie Institution of Washington.

Author information

Authors and Affiliations

Authors

Contributions

All authors devised the project and interpreted the data. D.T.W. and M.J.R. carried out the experiments. E.H.H. was responsible for data acquisition. D.T.W. performed the computer simulations. D.T.W. and A.E.S. wrote the paper with input from all co-authors.

Corresponding author

Correspondence to Alberto E. Saal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 891 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wetzel, D., Hauri, E., Saal, A. et al. Carbon content and degassing history of the lunar volcanic glasses. Nature Geosci 8, 755–758 (2015). https://doi.org/10.1038/ngeo2511

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2511

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing