Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phanerozoic trends in skeletal mineralogy driven by mass extinctions

Abstract

Marine calcifying organisms that produce sediments and build reefs generally have skeletons and shells that are composed of either aragonite or calcite. Long-term changes in the estimated Mg/Ca ratios of sea water tend to correspond to changes in the prevailing mineralogy of these creatures1,2. High Mg/Ca ratios are expected to favour the spread of aragonitic organisms, whereas calcitic taxa are thought to benefit from low Mg/Ca ratios3,4,5,6. Here we test these patterns throughout the Phanerozoic eon and assess the relative impacts of changing ocean chemistry and mass extinctions on the evolutionary success of calcifying organisms. We find that mass extinctions are more important in regulating long-term patterns of skeletal mineralogy than the Mg/Ca ratios of the global oceans. Furthermore, selective recovery from mass extinctions is usually more important than selective extinction, in driving the Phanerozoic pattern of skeletal mineralogy. But even in the recovery phase there is no clear connection between changes in the dominance of aragonite or calcite and the Mg/Ca ratio of the oceans, thus providing further evidence for the complexity of biotic recoveries7.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proportional abundance of aragonitic invertebrate fossils through the Phanerozoic eon.
Figure 2: Diversification rates of low-Mg calcitic and aragonitic genera.
Figure 3: Proportional abundance of stony corals in epifaunal macrofossil assemblages within carbonates.

Similar content being viewed by others

References

  1. Stanley, S. M. & Hardie, L. A. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr. Palaeoclimatol. Palaeoecol. 144, 3–19 (1998).

    Article  Google Scholar 

  2. Stanley, S. M. Influence of seawater chemistry on biomineralization throughout Phanerozoic time: Paleontological and experimental evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 214–236 (2006).

    Article  Google Scholar 

  3. Harper, E. M., Palmer, T. J. & Alphey, J. R. Evolutionary response by bivalves to changing Phanerozoic sea-water chemistry. Geol. Mag. 134, 403–407 (1997).

    Article  Google Scholar 

  4. Stanley, S. M., Ries, J. B. & Hardie, L. A. Seawater chemistry, coccolithophore population growth, and the origin of Cretaceous chalk. Geology 33, 593–596 (2005).

    Article  Google Scholar 

  5. Ries, J. B. Aragonite production in calcite seas: Effect of seawater Mg/Ca ratio on the calcification and growth of the calcareous alga Penicillus capitatus. Paleobiology 31, 445–458 (2005).

    Article  Google Scholar 

  6. Ries, J. B., Stanley, S. M. & Hardie, L. A. Scleractinian corals produce calcite, and grow more slowly, in artificial Cretaceous seawater. Geology 34, 525–528 (2006).

    Article  Google Scholar 

  7. Jablonski, D. Survival without recovery after mass extinctions. Proc. Natl Acad. Sci. USA 99, 8139–8144 (2002).

    Article  Google Scholar 

  8. Sandberg, P. A. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature 305, 19–22 (1983).

    Article  Google Scholar 

  9. Hardie, L. A. Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 Myr. Geology 24, 279–283 (1996).

    Article  Google Scholar 

  10. Holland, H. D. Sea level, sediments and the composition of seawater. Am. J. Sci. 305, 220–239 (2005).

    Article  Google Scholar 

  11. Farkas, J. et al. Calcium isotope record of Phanerozoic oceans: Implications for chemical evolution of seawater and its causative mechanisms. Geochim. Cosmochim. Acta 71, 5117–5134 (2007).

    Article  Google Scholar 

  12. Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A. & Demicco, R. V. Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions. Science 294, 1086–1088 (2001).

    Article  Google Scholar 

  13. Morse, J. W., Wang, Q. & Tsio, M. Y. Influences of temperature and Mg:Ca ratio on CaCO3 precipitates from seawater. Geology 25, 85–87 (1997).

    Article  Google Scholar 

  14. Mackenzie, F. T. & Agegian, C. in Origin Evolution and Modern Aspects of Biomineralization in Plants and Animals (ed. Crick, R. E.) 11–28 (Plenum, New York, 1989).

    Google Scholar 

  15. Railsback, L. B. & Anderson, T. F. Control of Triassic seawater chemistry and temperature on the evolution of post-Paleozoic aragonite-secreting faunas. Geology 15, 1002–1005 (1987).

    Article  Google Scholar 

  16. Hautmann, M. Effect of end-Triassic CO2 maximum on carbonate sedimentation and marine mass extinction. Facies 50, 257–261 (2004).

    Article  Google Scholar 

  17. Stanley, S. M., Ries, J. B. & Hardie, L. A. Low-magnesium calcite produced by coralline algae in seawater of Late Cretaceous composition. Proc. Natl Acad. Sci. USA 99, 15323–15326 (2002).

    Article  Google Scholar 

  18. Ries, J. B. Effect of ambient Mg/Ca ratio on Mg fractionation in calcareous marine invertebrates: A record of the oceanic Mg/Ca ratio over the Phanerozoic. Geology 32, 981–984 (2004).

    Article  Google Scholar 

  19. Checa, A. G., Jimenez-Lopez, C., Rodriguez-Navarro, A. & Machado, J. P. Precipitation of aragonite by calcitic bivalves in Mg-enriched marine waters. Mar. Biol. 150, 819–827 (2007).

    Article  Google Scholar 

  20. Porter, S. M. Seawater chemistry and early carbonate biomineralization. Science 316, 1302 (2007).

    Article  Google Scholar 

  21. Bambach, R. K., Knoll, A. H. & Sepkoski, J. J. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proc. Natl Acad. Sci. USA 99, 6854–6859 (2002).

    Article  Google Scholar 

  22. Cherns, L. & Wright, V. P. Missing molluscs as evidence of large-scale, early skeletal aragonite dissolution in a Silurian sea. Geology 28, 791–794 (2000).

    Article  Google Scholar 

  23. Wright, P., Cherns, L. & Hodges, P. Missing molluscs: Field testing taphonomic loss in the Mesozoic through early large-scale aragonite dissolution. Geology 31, 211–214 (2003).

    Article  Google Scholar 

  24. Palmer, T. J. & Wilson, M. A. Calcite precipitation and dissolution of biogenic aragonite in shallow Ordovician calcite seas. Lethaia 37, 417–427 (2004).

    Article  Google Scholar 

  25. Raup, D. M. The role of extinction in evolution. Proc. Natl Acad. Sci. USA 91, 6758–6763 (1994).

    Article  Google Scholar 

  26. Jablonski, D. Mass extinctions and macroevolution. Paleobiology 31, 192–210 (2005).

    Article  Google Scholar 

  27. Kiessling, W. Sampling-standardized expansion and collapse of reef building in the Phanerozoic. Fossil Rec. 11, 7–18 (2008).

    Article  Google Scholar 

  28. Kiessling, W., Aberhan, M., Brenneis, B. & Wagner, P. J. Extinction trajectories of benthic organisms across the Triassic–Jurassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 201–222 (2007).

    Article  Google Scholar 

  29. Foote, M. Origination and extinction through the Phanerozoic: A new approach. J. Geol. 111, 125–148 (2003).

    Article  Google Scholar 

  30. Raup, D. M. & Sepkoski, J. J. Jr. Mass extinctions in the marine fossil record. Science 215, 1501–1503 (1982).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the VolkswagenStiftung. We thank J.-P. Masse for discussions on rudist mineralogy and J. Alroy for hints on the assessment of diversity dynamics. This is Paleobiology Database publication #79.

Author information

Authors and Affiliations

Authors

Contributions

W.K. wrote the paper and carried out statistical analyses. All authors contributed to data synthesis (W.K., reefs and many taxa; M.A., bivalves; L.V., echinoderms) and provided intellectual input.

Corresponding author

Correspondence to Wolfgang Kiessling.

Supplementary information

Supplementary Information

Supplementary tables S1-S5 and figures S1-S14 (PDF 1061 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiessling, W., Aberhan, M. & Villier, L. Phanerozoic trends in skeletal mineralogy driven by mass extinctions. Nature Geosci 1, 527–530 (2008). https://doi.org/10.1038/ngeo251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing