Massive nitrous oxide emissions from the tropical South Pacific Ocean


Nitrous oxide is a potent greenhouse gas1 and a key compound in stratospheric ozone depletion2. In the ocean, nitrous oxide is produced at intermediate depths through nitrification and denitrification, in particular at low oxygen concentrations3. Although a third of natural emissions of nitrous oxide to the atmosphere originate from the ocean1, considerable uncertainties in the distribution and magnitude of the emissions still exist4. Here we present high-resolution surface measurements and vertical profiles of nitrous oxide that include the highest reported nitrous oxide concentrations in marine surface waters, suggesting that there is a hotspot of nitrous oxide emissions in high-productivity upwelling ecosystems along the Peruvian coast. We estimate that off Peru, the extremely high nitrous oxide supersaturations we observed drive a massive efflux of 0.2–0.9 Tg of nitrogen emitted as nitrous oxide per year, equivalent to 5–22% of previous estimates of global marine nitrous oxide emissions. Nutrient and gene abundance data suggest that coupled nitrification–denitrification in the upper oxygen minimum zone and transport of resulting nitrous oxide to the surface by upwelling lead to the high nitrous oxide concentrations. Our estimate of nitrous oxide emissions from the Peruvian coast surpasses values from similar, highly productive areas.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Sampling locations investigated in the ETSP.
Figure 2: Surface distribution of N2O, SST and O2 in the ETSP.
Figure 3: Comparison of N2O emissions from highly productive regions.


  1. 1

    Myhre, G. D. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 129–234 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  2. 2

    Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).

    Article  Google Scholar 

  3. 3

    Naqvi, S. W. A. et al. Marine hypoxia/anoxia as a source of CH4 and N2O. Biogeosciences 7, 2159–2190 (2010).

    Article  Google Scholar 

  4. 4

    Nevison, C. D., Weiss, R. F. & Erikson, D. J. III Global oceanic emissions of nitrous oxide. J. Geophys. Res. 100, 15809–15820 (1995).

    Article  Google Scholar 

  5. 5

    Chavez, F. P. & Messié, M. A comparison of eastern boundary upwelling ecosystems. Prog. Oceanogr. 83, 80–96 (2009).

    Article  Google Scholar 

  6. 6

    Chavez, F. P. & Togweiler, K. in Upwelling in the Ocean: Modern Processes and Ancient Records (eds Summerhayes, C. P., Emeis, K-C., Angel, M. V., Smith, R. L. & Zeitzschel, B.) 313–320 (John Wiley, 1995).

    Google Scholar 

  7. 7

    Stramma, L., Schmidtko, S., Levin, L. A. & Johnson, G. C. Ocean oxygen minima expansions and their biological impacts. Deep-Sea Res. I 57, 587–595 (2010).

    Article  Google Scholar 

  8. 8

    Kalvelage, T. et al. Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nature Geosci. 6, 228–234 (2013).

    Article  Google Scholar 

  9. 9

    Farías, L. et al. Denitrification and nitrous oxide cycling within the upper oxycline of the eastern tropical South Pacific oxygen minimum zone. Limnol. Oceanogr. 54, 132–144 (2009).

    Article  Google Scholar 

  10. 10

    Nevison, C. D., Lueker, T. J. & Weiss, R. F. Quantifying the nitrous oxide source from coastal upwelling. Glob. Biogeochem. Cycles 18, GB1018 (2004).

    Article  Google Scholar 

  11. 11

    Agnihotri, R., Altabet, M. A. & Herbert, T. D. Influence of marine denitrification on atmospheric N2O variability during the Holocene. Geophys. Res. Lett. 33, L13704 (2006).

    Article  Google Scholar 

  12. 12

    Codispoti, L. A. Interesting times for marine N2O. Science 327, 1339–1340 (2010).

    Article  Google Scholar 

  13. 13

    Bange, H. W., Rapsomanikis, S. & Andreae, M. O. Nitrous oxide in coastal waters. Glob. Biogeochem. Cycles 10, 197–207 (1996).

    Article  Google Scholar 

  14. 14

    Arévalo-Martínez, D. L. et al. A new method for continuous measurements of oceanic and atmospheric N2O, CO and CO2: Performance of off-axis integrated cavity output spectroscopy (OA-ICOS) coupled to non-dispersive infrared detection (NDIR). Ocean Sci. 9, 1071–1087 (2013).

    Article  Google Scholar 

  15. 15

    Naqvi, S. W. A. et al. Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature 408, 346–349 (2000).

    Article  Google Scholar 

  16. 16

    Law, C. S. & Owens, N. P. J. Significant flux of atmospheric nitrous oxide from the northwest Indian Ocean. Nature 346, 826–828 (1990).

    Article  Google Scholar 

  17. 17

    Bange, H. W., Rapsomanikis, S. & Andreae, M. O. Nitrous oxide cycling in the Arabian Sea. J. Geophys. Res. 106, 1053–1065 (2001).

    Article  Google Scholar 

  18. 18

    Liu, K-K., Atkinson, L., Quiñones, R. A. & Taleue-McManus, L. (eds) Carbon and Nutrient Fluxes in Continental Margins (Springer, 2010).

    Google Scholar 

  19. 19

    Wittke, F., Kock, A. & Bange, H. W. Nitrous oxide emissions from the upwelling area off Mauritania. Geophys. Res. Lett. 37, L12601 (2010).

    Article  Google Scholar 

  20. 20

    Lueker, T. J. et al. Coastal upwelling air–sea fluxes revealed in atmospheric observations of O2/N2, CO2 and N2O. Geophys. Res. Lett. 30, 1292 (2003).

    Article  Google Scholar 

  21. 21

    Codispoti, L. A. & Christensen, J. P. Nitrification, denitrification and nitrous oxide cycling in the eastern tropical South Pacific ocean. Mar. Chem. 16, 277–300 (1985).

    Article  Google Scholar 

  22. 22

    Löscher, C. R. et al. Production of oceanic nitrous oxide by ammonia-oxidizing archaea. Biogeosciences 9, 2419–2429 (2012).

    Article  Google Scholar 

  23. 23

    Nevison, C. D., Butler, J. H. & Elkins, J. W. Global distribution of N2O and the ΔN2O-AOU yield in the subsurface ocean. Glob. Biogeochem. Cycles 17, 1119 (2003).

    Article  Google Scholar 

  24. 24

    Dalsgaard, T. et al. Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off Northern Chile. mBio 5, e01966-14 (2014).

    Article  Google Scholar 

  25. 25

    Cabello, P., Roldán, M. D. & Moreno-Vivián, C. Nitrate reduction and the nitrogen cycle in archaea. Microbiology 150, 3527–3546 (2004).

    Article  Google Scholar 

  26. 26

    Capone, D. G. & Hutchins, D. A. Microbial biogeochemistry of coastal upwelling regimes in a changing ocean. Nature Geosci. 6, 711–717 (2013).

    Article  Google Scholar 

  27. 27

    Bange, H. W. et al. Nitrous oxide emissions from the Arabian Sea: A synthesis. Atmos. Chem. Phys. 1, 61–71 (2001).

    Article  Google Scholar 

  28. 28

    Nixon, S. & Thomas, A. On the size of the Peru upwelling ecosystem. Deep-Sea Res. I 48, 2521–2528 (2001).

    Article  Google Scholar 

  29. 29

    Sydeman, W. J. et al. Climate change and wind intensification in coastal upwelling ecosystems. Science 345, 77–80 (2014).

    Article  Google Scholar 

  30. 30

    Wang, D., Gouhier, T. C., Menge, B. C. & Ganguly, A. R. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518, 390–394 (2015).

    Article  Google Scholar 

  31. 31

    Walter, S., Breitenbach, U., Bange, H. W., Nausch, G. & Wallace, D. W. R. Distribution of N2O in the Baltic Sea during transition from anoxic to oxic conditions. Biogeosciences 3, 557–570 (2006).

    Article  Google Scholar 

  32. 32

    Hansen, H. P. in. in Methods of Seawater Analysis (eds Grasshoff, K. G., Kremling, K. & Ehrhardt, M.) 75–90 (Wiley-VCH, 1999).

    Google Scholar 

  33. 33

    Hydes, D. J. et al. in The GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and Guidelines IOCCP Report No. 14 (eds Hood, E. M., Sabine, C. L. & Sloyan, B. M.) (ICPO Publication Series Number 134, International Clivar Project Office, 2010);

    Google Scholar 

  34. 34

    Welschmeyer, N. Fluorometric analysis of Chlorophyll a in the presence of Chlorophyll b and phaeopigments. Limnol. Oceanogr. 39, 1985–1992 (1994).

    Article  Google Scholar 

  35. 35

    Lorbacher, K., Dommenget, D., Niiler, P. P. & Köhl, A. Ocean mixed layer depth: A subsurface proxy of ocean-atmosphere variability. J. Geophys. Res. 111, C07010 (2006).

    Article  Google Scholar 

  36. 36

    Kara, A. B., Rochford, P. A. & Hurlburt, H. E. An optimal definition for ocean mixed layer depth. J. Geophys. Res. 105, 16803–16821 (2000).

    Article  Google Scholar 

  37. 37

    de Boyer Montégut, C., Madec, C. G., Fischer, A. S., Lazar, A. & Iudicone, D. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res. 109, C12003 (2004).

    Article  Google Scholar 

  38. 38

    Upstill-Goddard, R. C. Air-sea gas exchange in the coastal zone. Estuar. Coast. Shelf Sci. 70, 388–404 (2006).

    Article  Google Scholar 

  39. 39

    Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97, 7373–7382 (1992).

    Article  Google Scholar 

  40. 40

    Nightingale, P. D. et al. In situ evaluation of air–sea gas exchange parameterizations using novel conservative and volatile tracers. Glob. Biogeochem. Cycles 14, 373–387 (2000).

    Article  Google Scholar 

  41. 41

    Tsai, W-T. & Liu, K-K. An assessment of the effect of sea surface surfactant on global atmosphere-ocean CO2 flux. J. Geophys. Res. 108, 3127 (2003).

    Article  Google Scholar 

  42. 42

    Kock, A., Schafstall, J., Dengler, M., Brandt, P. & Bange, H. W. Sea-to-air and diapycnal nitrous oxide fluxes in the eastern tropical North Atlantic Ocean. Biogeosciences 9, 957–964 (2012).

    Article  Google Scholar 

  43. 43

    The GEBCO_08 Grid, version 20091120 (British Oceanographic Data Center, 2014);

  44. 44

    Messié, M. et al. Potential new production estimates in four eastern boundary upwelling ecosystems. Prog. Oceanogr. 83, 151–158 (2009).

    Article  Google Scholar 

  45. 45

    Löscher, C. R. et al. Facets of diazotrophy in the oxygen minimum zone waters off Peru. ISME J. 8, 2180–2192 (2014).

    Article  Google Scholar 

  46. 46

    Schlitzer, R. Ocean Data View (Alfred Wegener Institute, 2015);

    Google Scholar 

Download references


We thank the Peruvian authorities for allowing us to conduct the study in their territorial waters. Likewise we would like to thank our Peruvian colleagues M. Graco, A. Bernal, G. Flores and V. León for their logistical support to our work. We thank the captains and crew of the RV Meteor for their assistance during the cruises M90, M91 and M93. We also thank L. Stramma and G. Lavik for their support during the M90 and M93 cruises, as well as B. Provencal (Los Gatos Research Inc.) and T. Steinhoff (GEOMAR) for providing technical support in setting up the systems. Moreover, we thank T. Baustian, A. Bernal, J. Craig, G. Eirund, G. Flores, V. León, M. Lohmann, N. Martogli and K. Nachtigall for their contribution in the collection and analysis of discrete samples of O2, nutrients, Chla and N2O, as well as G. Krahmann for providing processed CTD data. The work presented here was made possible by the Future Ocean Excellence Cluster at Kiel University (project CP0910), the DFG-supported project SFB754 (, the BMBF joint project SOPRAN II and III (FKZ 03F0611A and FKZ 03F662A), and the EU FP7 project InGOS (Grant Agreement # 284274).

Author information




H.W.B., A.K. and D.L.A-M. designed the study; D.L.A-M. set up the continuous and discrete measuring systems for N2O on board the RV Meteor and carried out the continuous measurements during the cruises. A.K. participated in the fieldwork and carried out the discrete measurements of N2O together with D.L.A-M. Data processing, reduction and calibration routines for underway data were done by D.L.A-M., and A.K. processed and calibrated depth profile N2O data. C.R.L. collected and processed the molecular data. D.L.A-M. wrote the manuscript with contributions from H.W.B., A.K., C.R.L. and R.A.S.

Corresponding author

Correspondence to D. L. Arévalo-Martínez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1305 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arévalo-Martínez, D., Kock, A., Löscher, C. et al. Massive nitrous oxide emissions from the tropical South Pacific Ocean. Nature Geosci 8, 530–533 (2015).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing