Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

You are viewing this page in draft mode.

Nitrogen isotope variations in the Solar System

Abstract

The relative proportion of the two isotopes of nitrogen, 14N and 15N, varies dramatically across the Solar System, despite little variation on Earth. NASA's Genesis mission directly sampled the solar wind and confirmed that the Sun — and, by inference, the protosolar nebula from which the Solar System formed — is highly depleted in the heavier isotope compared with the reference nitrogen isotopic composition, that of Earth's atmosphere. In contrast, the inner planets, asteroids, and comets are enriched in 15N by tens to hundreds of per cent; organic matter in primitive meteorites records the highest 15N/14N isotopic ratios. The measurements indicate that the protosolar nebula, inner Solar System, and cometary ices represent three distinct isotopic reservoirs, and that the 15N enrichment generally increases with distance from the Sun. The 15N enrichments were probably not inherited from presolar material, but instead resulted from nitrogen isotope fractionation processes that occurred early in Solar System history. Improvements in analytical techniques and spacecraft observations have made it possible to measure nitrogen isotopic variability in the Solar System at a level of accuracy that offers a window into the processing of early Solar System material, large-scale disk dynamics and planetary formation processes.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Nitrogen isotope variation in molecular clouds from our galaxy as a function of distance from the galactic centre.
Figure 2: Nitrogen isotope variations in Solar System objects and reservoirs.

References

  1. 1

    Boss, A. P. & Goswami, J. N. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y.) 171–186 (Univ. Arizona Press, 2006).

    Google Scholar 

  2. 2

    Warren, P. H. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93–100 (2011).

    Google Scholar 

  3. 3

    Zinner, E. et al. NanoSIMS isotopic analysis of small presolar grains: Search for Si3N4 grains from AGB stars and Al and Ti isotopic compositions of rare presolar SiC grains. Geochim. Cosmochim. Acta 71, 4786–4813 (2007).

    Google Scholar 

  4. 4

    Clayton, R. N. Isotopes: from Earth to the solar system. Annu. Rev. Earth Planet. Sci. 35, 1–19 (2007).

    Google Scholar 

  5. 5

    Rodgers, S. D. & Charnley, S. B. Nitrogen superfractionation in dense cloud cores. Mon. Not. R. Astron. Soc. 385, L48–L52 (2008).

    Google Scholar 

  6. 6

    Robert, F. The D/H ratio in chondrites. Space Sci. Rev. 106, 87–101 (2003).

    Google Scholar 

  7. 7

    Robert, F., Gautier, D. & Dubrulle, B. The solar system D/H ratio: Observations and theories. Sp. Sci. Rev. 92, 201–224 (2000).

    Google Scholar 

  8. 8

    Deloule, E., Robert, F. & Doukhan, J. C. Interstellar hydroxyl in meteoritic chondrules: Implications for the origin of water in the inner solar system. Geochim. Cosmochim. Acta 62, 3367–3378 (1998).

    Google Scholar 

  9. 9

    Bockelée-Morvan, D., Crovisier, J., Mumma, M. J. & Weaver, H. A. in Comets II (Festou, M. C., Keller, H. U. & Weaver, H. A.) 391–423 (Univ. Arizona Press, 2004).

    Google Scholar 

  10. 10

    Hartogh, P. et al. Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478, 218–220 (2011).

    Google Scholar 

  11. 11

    Altwegg, K. et al. 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347, 1261952 (2015).

    Google Scholar 

  12. 12

    Jacquet, E. & Robert, F. Water transport in protoplanetary disks and the hydrogen isotopic composition of chondrites. Icarus 223, 722–732 (2013).

    Google Scholar 

  13. 13

    Nier, A. A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Phys. Rev. 77, 789–793 (1950).

    Google Scholar 

  14. 14

    Cartigny, P. & Marty, B. Nitrogen isotopes and mantle geodynamics: the emergence of life and the atmosphere-crust-mantle connection. Elements 9, 359–366 (2013).

    Google Scholar 

  15. 15

    Audouze, J., Lequeux, J. & Vigroux, L. Isotopes of carbon, nitrogen and oxygen as probes of nucleosynthesis, stellar mass losses and galactic evolution. Astron. Astrophys. 43, 71–83 (1975).

    Google Scholar 

  16. 16

    Chin, Y., Henkel, C., Langer, N. & Mauersberger, R. The detection of extragalactic 15N: consequences for nitrogen nucleosynthesis and chemical evolution. Astrophys. J. 512, L143–L146 (1999).

    Google Scholar 

  17. 17

    Adande, G. R. & Ziurys, L. M. Millimeter-wave observations of CN and HNC and their 15N isotopologues: a new evaluation of the 14N/15N ratio across the galaxy. Astrophys. J. 744, 194 (2012).

    Google Scholar 

  18. 18

    Dahmen, G., Wilson, T. L. & Matteucci, F. The nitrogen isotope abundance in the Galaxy, I. The Galactic disk gradient. Astron. Astrophys. 295, 194–198 (1995).

    Google Scholar 

  19. 19

    Hily-Blant, P., Bonal, L., Faure, a. & Quirico, E. The 15N-enrichment in dark clouds and Solar System objects. Icarus 223, 582–590 (2013).

    Google Scholar 

  20. 20

    Bizzocchi, L., Caselli, P. & Dore, L. Detection of N15NH+ in L1544. Astron. Astrophys. 510, L5 (2010).

    Google Scholar 

  21. 21

    Gerin, M. et al. Detection of 15NH2D in dense cores: A new tool for measuring the 14N/15N ratio in the cold ISM. Astron. Astrophys. 498, L9–L12 (2009).

    Google Scholar 

  22. 22

    Lis, D. C., Wootten, A., Gerin, M. & Roueff, E. Nitrogen isotopic fractionation in interstellar ammonia. Astrophys. J. Lett. 710, L49–L52 (2010).

    Google Scholar 

  23. 23

    Wielen, R. & Wilson, T. L. The evolution of the C, N, and O isotope ratios from an improved comparison of the interstellar medium with the Sun. Astron. Astrophys. 142, 139–142 (1997).

    Google Scholar 

  24. 24

    Briani, G. et al. Pristine extraterrestrial material with unprecedented nitrogen isotopic variation. Proc. Natl Acad. Sci. USA 106, 10522–10527 (2009).

    Google Scholar 

  25. 25

    Hashizume, K., Chaussidon, M., Marty, B. & Terada, K. Protosolar carbon isotopic composition: implications for the origin of meteoritic organics. Astrophys. J. 600, 480–484 (2004).

    Google Scholar 

  26. 26

    Fouchet, T. et al. ISO-SWS observations of Jupiter: measurement of the ammonia tropospheric profile and of the 15N/14N isotopic ratio. Icarus 143, 223–243 (2000).

    Google Scholar 

  27. 27

    Owen, T., Mahaffy, P. R., Niemann, H. B., Atreya, S. & Wong, M. Protosolar nitrogen. Astrophys. J. 553, L77–L79 (2001).

    Google Scholar 

  28. 28

    Meibom, A. et al. Nitrogen and carbon isotopic composition of the Sun inferred from a high-temperature solar nebular condensate. Astrophys. J. 656, L33–L36 (2007).

    Google Scholar 

  29. 29

    Burnett, D. S. & Genesis Sci, T. Solar composition from the Genesis Discovery Mission. Proc. Natl Acad. Sci. USA 108, 19147–19151 (2011).

    Google Scholar 

  30. 30

    Marty, B. et al. Nitrogen isotopes in the recent solar wind from the analysis of Genesis targets: Evidence for large scale isotope heterogeneity in the early solar system. Geochim. Cosmochim. Acta 74, 340–355 (2010).

    Google Scholar 

  31. 31

    Marty, B., Chaussidon, M., Wiens, R. C., Jurewicz, A. J. G. & Burnett, D. S. A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples. Science 332, 1533–1536 (2011).

    Google Scholar 

  32. 32

    Becker, R. H. & Clayton, R. N. Nitrogen abundances and isotopic compositions in lunar samples. Proc. Lunar Sci. Conf. 6th 2131–2149 (1975).

  33. 33

    Kerridge, J. F. Solar nitrogen: Evidence for a secular change in the ratio of nitrogen-15 to nitrogen-14. Science 188, 162–164 (1975).

    Google Scholar 

  34. 34

    Bogard, D. D., Nyquist, L., Hirsch, W. C. & Moore, D. Trapped solar and cosmogenic noble gas abundances in Apollo 15 and 16 deep drill samples. Earth Planet. Sci. Lett. 21, 52–69 (1973).

    Google Scholar 

  35. 35

    Clayton, R. N. & Thiemens, M. H. in The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites (eds Pepin, R. O. et al.) 463–473 (Pergamon, 1980).

    Google Scholar 

  36. 36

    Geiss, J. & Bochsler, P. Nitrogen isotopes in the solar system. Geochim. Cosmochim. Acta 46, 529–548 (1982).

    Google Scholar 

  37. 37

    Wieler, R. The solar noble gas record in lunar samples and meteorites. Space Sci. Rev. 85, 303–314 (1998).

    Google Scholar 

  38. 38

    Wieler, R., Humbert, F. & Marty, B. Evidence for a predominantly non-solar origin of nitrogen in the lunar regolith revealed by single grain analyses. Earth Planet. Sci. Lett. 167, 47–60 (1999).

    Google Scholar 

  39. 39

    Hashizume, K., Marty, B. & Wieler, R. Analyses of nitrogen and argon in single lunar grains: towards a quantification of the asteroidal contribution to planetary surfaces. Earth Planet. Sci. Lett. 202, 201–216 (2002).

    Google Scholar 

  40. 40

    Füri, E., Marty, B. & Assonov, S. S. Constraints on the flux of meteoritic and cometary water on the Moon from volatile element (N-Ar) analyses of single lunar soil grains, Luna 24 core. Icarus 218, 220–229 (2012).

    Google Scholar 

  41. 41

    Hashizume, K., Chaussidon, M., Marty, B. & Robert, F. Solar wind record on the Moon: deciphering presolar from planetary nitrogen. Science 290, 1142–1145 (2000).

    Google Scholar 

  42. 42

    Ozima, M. et al. Terrestrial nitrogen and noble gases in lunar soils. Nature 436, 655–659 (2005).

    Google Scholar 

  43. 43

    Fletcher, L. N. et al. The origin of nitrogen on Jupiter and Saturn from the 15N/14N ratio. Icarus 238, 170–190 (2014).

    Google Scholar 

  44. 44

    Owen, T. et al. A low-temperature origin for the planetesimals that formed Jupiter. Nature 402, 269–270 (1999).

    Google Scholar 

  45. 45

    Kerridge, J. F., Eugster, O., Kim, J. S. & Marti, K. Nitrogen isotopes in the 74001/74002 double-drive tube from Shorty Crater, Apollo 17. Proc. 21st Lunar Planet. Sci. Conf. 54, 291–299 (1991).

    Google Scholar 

  46. 46

    Mathew, K. J. & Marti, K. Early evolution of Martian volatiles: Nitrogen and noble gas components in ALH84001 and Chassigny. J. Geophys. Res. 106, 1401–1422 (2001).

    Google Scholar 

  47. 47

    Hoffman, J. H., Oyama, V. I. & von Zahn, U. Measurements of the Venus lower atmosphere composition: A comparison of results. J. Geophys. Res. 85, 7871 (1980).

    Google Scholar 

  48. 48

    Alexander, C. M. O. et al. The origin of chondritic macromolecular organic matter: A carbon and nitrogen study. Meteorit. Planet. Sci. 33, 603–622 (1998).

    Google Scholar 

  49. 49

    Robert, F. & Epstein, S. The concentration and isotopic composition of hydrogen, carbon and nitrogen in carbonaceous meteorites. Geochim. Cosmochim. Acta 46, 81–95 (1982).

    Google Scholar 

  50. 50

    Kerridge, J. F. Carbon, hydrogen and nitrogen in carbonaceous chondrites: abundances and isotopic compositions in bulk samples. Geochim. Cosmochim. Acta 49, 1707–1714 (1985).

    Google Scholar 

  51. 51

    Weisberg, M. et al. The CR chondrite clan. Proc. NIPR Symp. Antart. Meteorites 8, 11–32 (1995).

    Google Scholar 

  52. 52

    Grady, M. M. & Pillinger, C. T. ALH 85085: nitrogen isotope analysis of a highly unusual primitive chondrite. Earth Planet. Sci. Lett. 97, 29–40 (1990).

    Google Scholar 

  53. 53

    Prombo, C. A. & Clayton, R. N. A striking nitrogen isotope anomaly in the Bencubbin and Weatherford meteorites. Science 230, 935–937 (1985).

    Google Scholar 

  54. 54

    Marty, B., Kelley, S. & Turner, G. Chronology and shock history of the Bencubbin meteorite: A nitrogen, noble gas, and Ar–Ar investigation of silicates, metal and fluid inclusions. Geochim. Cosmochim. Acta 74, 6636–6653 (2010).

    Google Scholar 

  55. 55

    Ivanova, M. A. et al. The Isheyevo meteorite: Mineralogy, petrology, bulk chemistry, oxygen, nitrogen, carbon isotopic compositions, and 40Ar-39Ar ages. Meteorit. Planet. Sci. 43, 915–940 (2008).

    Google Scholar 

  56. 56

    Bonal, L. et al. Highly 15N-enriched chondritic clasts in the CB/CH-like meteorite Isheyevo. Geochim. Cosmochim. Acta 74, 6590–6609 (2010).

    Google Scholar 

  57. 57

    Busemann, H. et al. Interstellar chemistry recorded in organic matter from primitive meteorites. Science 312, 727–730 (2006).

    Google Scholar 

  58. 58

    Aléon, J., Robert, F., Chaussidon, M. & Marty, B. Nitrogen isotopic composition of macromolecular organic matter in interplanetary dust particles. Geochim. Cosmochim. Acta 67, 3773–3783 (2003).

    Google Scholar 

  59. 59

    Nakamura-Messenger, K., Messenger, S., Keller, L. P., Clemett, S. J. & Zolensky, M. E. Organic globules in the Tagish Lake meteorite: remnants of the protosolar disk. Science 314, 1439–1442 (2006).

    Google Scholar 

  60. 60

    Brownlee, D. E. The Stardust mission: Analyzing samples from the edge of the solar system. Annu. Rev. Earth Planet. Sci. 42, 179–205 (2014).

    Google Scholar 

  61. 61

    Brownlee, D. Comet 81P/Wild 2 under a microscope. Science 314, 1711–1716 (2006).

    Google Scholar 

  62. 62

    McKeegan, K. D. et al. Isotopic compositions of cometary matter returned by Stardust. Science 314, 1724–8 (2006).

    Google Scholar 

  63. 63

    Stadermann, F. J. et al. Stardust in Stardust—the C, N, and O isotopic compositions of Wild 2 cometary matter in Al foil impacts. Meteor. Planet. Sci. 313, 299–313 (2008).

    Google Scholar 

  64. 64

    Arpigny, C. et al. Anomalous nitrogen isotope ratio in comets. Science 301, 1522–1524 (2003).

    Google Scholar 

  65. 65

    Jehin, E., Manfroid, J., Hutsemékers, D., Arpigny, C. & Zucconi, J-M. Isotopic ratios in comets: status and perspectives. Earth. Moon Planets 105, 167–180 (2009).

    Google Scholar 

  66. 66

    Bockelée-Morvan, D. et al. Large excess of heavy nitrogen in both hydrogen cyanide and cyanogen from comet 17P/Holmes. Astrophys. J. 679, L49–L52 (2008).

    Google Scholar 

  67. 67

    Rousselot, P. et al. Toward a unique nitrogen isotopic ratio in cometary ices. Astrophys. J. 780, L17 (2014).

    Google Scholar 

  68. 68

    Shinnaka, Y., Kawakita, H., Kobayashi, H., Nagashima, M. & Boice, D. C. 14NH2/15NH2 ratio in comet C/2012 S1 (Ison) observed during its outburst in 2013 November. Astrophys. J. 782, L16 (2014).

    Google Scholar 

  69. 69

    Duncan, M. J. & Levison, H. F. A disk of scattered icy objects and the origin of Jupiter-family comets. Science 276, 1670–1672 (1997).

    Google Scholar 

  70. 70

    Carusi, A., Kresák, L., Perozzi, E. & Valsecchi, G. B. High-order librations of Halley-type comets. Astron. Astrophys. 187, 899–905 (1987).

    Google Scholar 

  71. 71

    Füri, E., Chaussidon, M. & Marty, B. Evidence for an early nitrogen isotopic evolution in the solar nebula from volatile analyses of a CAI from the CV3 chondrite NWA 8616. Geochim. Cosmochim. Acta 153, 183–201 (2015).

    Google Scholar 

  72. 72

    Terzieva, R. & Herbst, E. The possibility of nitrogen isotopic fractionation in interstellar clouds. Mon. Not. R. Astron. Soc. 317, 563–568 (2000).

    Google Scholar 

  73. 73

    Charnley, S. B. & Rodgers, S. D. The end of interstellar chemistry as the origin of nitrogen in comets and meteorites. Astrophys. J. Lett. 569, L133–L137 (2002).

    Google Scholar 

  74. 74

    Chakraborty, S. et al. Massive isotopic effect in vacuum UV photodissociation of N2 and implications for meteorite data. Proc. Natl Acad. Sci. USA 111, 14704–14709 (2014).

    Google Scholar 

  75. 75

    Aléon, J. Multiple origins of nitrogen isotopic anomalies in meteorites and comets. Astrophys. J. 722, 1342–1351 (2010).

    Google Scholar 

  76. 76

    Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012).

    Google Scholar 

  77. 77

    Füri, E., Deloule, E., Gurenko, A. & Marty, B. New evidence for chondritic lunar water from combined D/H and noble gas analyses of single Apollo 17 volcanic glasses. Icarus 229, 109–120 (2014).

    Google Scholar 

  78. 78

    Grinspoon, D. H. Implications of the high D/H ratio for the sources of water in Venus' atmosphere. Nature 363, 428–431 (1993).

    Google Scholar 

  79. 79

    Leshin, L. A. Insights into martian water reservoirs from analyses of martian meteorite QUE94201. Geophys. Res. Lett. 27, 2017–2020 (2000).

    Google Scholar 

  80. 80

    Leshin, L. A. et al. Volatile, isotope, and organic analysis of martian fines with the Mars Curiosity rover. Science 341, 1238937 (2013).

    Google Scholar 

  81. 81

    Alexander, C. M. O., Fogel, M., Yabuta, H. & Cody, G. D. The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochim. Cosmochim. Acta 71, 4380–4403 (2007).

    Google Scholar 

  82. 82

    Macy, W. & Smith, W. H. Detection of HD on Saturn and Uranus, and the D/H ratio. Astrophys. J. 222, L73 (1978).

    Google Scholar 

  83. 83

    Mahaffy, P. R., Donahue, T. M., Atreya, S. K., Owen, T. C. & Niemann, H. B. Galileo probe measurements of D/H and3He/4He in Jupiter's atmosphere. Space Sci. Rev. 84, 251–263 (1998).

    Google Scholar 

  84. 84

    Niemann, H. B. et al. Composition of Titan's lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment. J. Geophys. Res. 115, E12006 (2010).

    Google Scholar 

  85. 85

    Ceccarelli, C. et al. in Protostars and Planets VI: Part IV: Astrophysical conditions for life (eds Beuther, H. et al.) 859–882 (University of Arizona Press, 2014).

    Google Scholar 

  86. 86

    Manfroid, J. et al. The CN isotopic ratios in comets. Astron. Astrophys. 503, 613–624 (2009).

    Google Scholar 

  87. 87

    Javoy, M. & Pineau, F. The volatiles record of a “popping” rock from the Mid-Atlantic Ridge at 14°N: chemical and isotopic composition of gas trapped in the vesicles. Earth Planet. Sci. Lett. 107, 598–611 (1991).

    Google Scholar 

  88. 88

    Hashizume, K. & Marty, B. in Handbook of Stable Isotope Analytical Techniques (ed. de Groot, P. A.) 361–375 (Elsevier Science, 2004).

    Google Scholar 

  89. 89

    Barry, P. H., Hilton, D. R., Halldórsson, S. A., Hahm, D. & Marti, K. High precision nitrogen isotope measurements in oceanic basalts using a static triple collection noble gas mass spectrometer. Geochem. Geophys. Geosyst. 13, Q01019 (2012).

    Google Scholar 

  90. 90

    Hauri, E. H., Wang, J., Pearson, D. G. & Bulanova, G. P. Microanalysis of δ13C, δ15N, and N abundances in diamonds by secondary ion mass spectrometry. Chem. Geol. 185, 149–163 (2002).

    Google Scholar 

  91. 91

    Rubin, M. et al. Molecular nitrogen in comet 67P/Churyumov– Gerasimenko indicates a low formation temperature. Science (2015).

  92. 92

    Adams, N. G. & Smith, D. 14N/15N isotope fractionation in the reaction N2H+ + N2: Interstellar significance. Astrophys. J. 247, L123–L125 (1981).

    Google Scholar 

  93. 93

    Geppert, W. D. et al. Dissociative recombination of N2H+: evidence for fracture of the N-N Bond. Astrophys. J. 609, 459–464 (2004).

    Google Scholar 

  94. 94

    Molek, C. D., McLain, J. L., Poterya, V. & Adams, N. G. A remeasurement of the products for electron recombination of N2H+ using a new technique: no significant NH + N production. J. Phys. Chem. A 111, 6760–6765 (2007).

    Google Scholar 

  95. 95

    Clayton, R. N. Self-shielding in the solar nebula. Nature 415, 860–861 (2002).

    Google Scholar 

  96. 96

    Muskatel, B. H., Remacle, F., Thiemens, M. H. & Levine, R. D. On the strong and selective isotope effect in the UV excitation of N2 with implications toward the nebula and Martian atmosphere. Proc. Natl Acad. Sci. USA 108, 6020–6025 (2011).

    Google Scholar 

  97. 97

    Davis, A. M. et al. in Protostars and Planets VI (eds Beuther, H. et al.) 809–831 (Univ. Arizona Press, 2015).

    Google Scholar 

  98. 98

    Alexander, C. M. O. et al. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721–723 (2012).

    Google Scholar 

Download references

Acknowledgements

Discussions with J. Aléon, K. Altwegg, D. Bockelée-Morvan, P. Cartigny, M. Chaussidon, K. Mandt, O. Mousis, and F. Robert were much appreciated during the preparation of this work. This work was supported by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013 grant agreement no. 267255 to B.M.), the Deep Carbon Observatory, and the CNRS-INSU Programme de Planétologie (PNP). This is CRPG-CNRS contribution 2372.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Evelyn Füri or Bernard Marty.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Füri, E., Marty, B. Nitrogen isotope variations in the Solar System. Nature Geosci 8, 515–522 (2015). https://doi.org/10.1038/ngeo2451

Download citation

Further reading

Search

Quick links