Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tug of war on summertime circulation between radiative forcing and sea surface warming

Abstract

During summertime, monsoons and subtropical anticyclones shape precipitation and regional circulation patterns across the globe. In state-of-the-art climate models, the average response of the Asian monsoon cyclone, Pacific ocean anticyclone and jet stream to global warming is weak and responses of different models are diverse. Here we use a suite of simulations with atmospheric general circulation models with prescribed sea surface temperatures to separate the circulation responses to direct radiative forcing and indirect sea surface temperature warming. We find that the two contributions oppose each other. Using idealized aquaplanet simulations, we show that the different circulation responses are directly connected to the opposite responses of land–sea thermal contrast to the two forcing components. This tug of war on the circulation response to global warming is analogous to the seasonal response to insolation, which involves opposite land–sea thermal contrasts and circulation patterns governed by quasi-equilibrium thermodynamics and stationary-wave dynamics. We conclude that it is important to distinguish weak circulation responses to global warming that arise owing to compensating effects that are robust and physically understood from those that are associated with genuine uncertainty. We note that compensation places fundamental limits on the detection and attribution of circulation responses to global warming.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multi-model-mean summertime circulation response to global warming.
Figure 2: Summertime circulation response in the upper troposphere.
Figure 3: Response to seasonal solar insolation versus global warming.
Figure 4: Importance of land–sea contrasts.
Figure 5: Temporal evolution of the circulation tug of war.

Similar content being viewed by others

References

  1. Webster, P. J. Response of the tropical atmosphere to local, steady forcing. Mon. Weath. Rev. 100, 518–541 (1972).

    Article  Google Scholar 

  2. Gill, A. E. Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 106, 447–462 (1980).

    Article  Google Scholar 

  3. Ting, M. Maintenance of the Northern Summer stationary waves in a GCM. J. Atmos. Sci. 51, 3286–3308 (1994).

    Article  Google Scholar 

  4. Wang, H. & Ting, M. Seasonal cycle of the climatological stationary waves in the NCEP-NCAR reanalysis. J. Atmos. Sci. 56, 3892–3919 (1999).

    Article  Google Scholar 

  5. Rodwell, M. J. & Hoskins, B. J. Subtropical anticyclones and summer monsoons. J. Clim. 14, 3192–3211 (2001).

    Article  Google Scholar 

  6. Chen, P., Hoerling, M. P. & Dole, R. The origin of subtropical anticyclones. J. Atmos. Sci. 58, 1827–1835 (2001).

    Article  Google Scholar 

  7. Webster, P. & Fasullo, J. in Encyclopedia of Atmospheric Sciences (eds Holton, J. R., Curry, J. A. & Pyle, J. A.) 1370–1391 (Academic Press, 2003).

    Book  Google Scholar 

  8. Seager, R. et al. Air–sea interactions and the seasonal cycle of the subtropical anticyclones. J. Clim. 16, 1948–1966 (2003).

    Article  Google Scholar 

  9. Liu, Y., Wu, G. & Ren, R. Relationship between the subtropical anticyclone and diabatic heating. J. Clim. 17, 682–698 (2004).

    Article  Google Scholar 

  10. Chen, T-C. Characteristics of summer stationary waves in the Northern Hemisphere. J. Clim. 23, 4489–4507 (2010).

    Article  Google Scholar 

  11. Shaw, T. A. On the role of planetary-scale waves in the abrupt seasonal transition of the Northern Hemisphere general circulation. J. Atmos. Sci. 71, 1724–1746 (2014).

    Article  Google Scholar 

  12. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

    Google Scholar 

  13. Christiansen, J. H. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 14, 1217–1308 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  14. Manabe, S., Stouffer, R. J., Spelman, M. K. & Bryan, K. Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Clim. 4, 785–818 (1991).

    Article  Google Scholar 

  15. Kamae, Y., Watanabe, M., Kimoto, M. & Shiogama, H. Summertime land–sea thermal contrast and atmospheric circulation over East Asia in a warming climate—Part I: Past changes and future projections. Clim. Dynam. 43, 2553–2568 (2014).

    Article  Google Scholar 

  16. Kamae, Y., Watanabe, M., Kimoto, M. & Shiogama, H. Summertime land–sea thermal contrast and atmospheric circulation over East Asia in a warming climate—Part II: Importance of CO2-induced continental warming. Clim. Dynam. 43, 2569–2583 (2014).

    Article  Google Scholar 

  17. Li, W., Li, L., Ting, M. & Liu, Y. Intensification of the Northern Hemisphere subtropical highs in a warming climate. Nature Geosci. 5, 830–834 (2012).

    Article  Google Scholar 

  18. Bakun, A. Global climate change and the intensification of coastal ocean upwelling. Science 247, 198–201 (1990).

    Article  Google Scholar 

  19. Yin, J. H. A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett. 32, L18701 (2005).

    Article  Google Scholar 

  20. Lorenz, D. J. & DeWeaver, E. Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res. 112, D10119 (2007).

    Article  Google Scholar 

  21. Barnes, E. A. & Polvani, L. M. Response of the midlatitude jets, and their variability, to increased greenhouse gases in the CMIP5 models. J. Clim. 26, 7117–7135 (2013).

    Article  Google Scholar 

  22. Simpson, I. R., Shaw, T. A. & Seager, R. A diagnosis of the seasonally and longitudinally varying mid-latitude circulation response to global warming. J. Atmos. Sci. 71, 2489–2515 (2014).

    Article  Google Scholar 

  23. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  24. Deser, C. & Phillips, A. S. Atmospheric circulation trends, 1950–2000: The relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. J. Clim. 22, 396–413 (2009).

    Article  Google Scholar 

  25. Li, H., Dai, A., Zhou, T. & Lu, J. Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000. Clim. Dynam. 34, 501–514 (2010).

    Article  Google Scholar 

  26. Bony, S. et al. Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nature Geosci. 6, 447–451 (2013).

    Article  Google Scholar 

  27. Grise, K. M. & Polvani, L. M. The atmospheric circulation response to increased CO2: The relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. Geophys. Res. Lett. 41, 6863–6871 (2014).

    Article  Google Scholar 

  28. Nie, X., Boos, W. R. & Kuang, Z. Observational evidence of a quasi-equilibrium view of monsoons. J. Clim. 23, 4416–4428 (2010).

    Article  Google Scholar 

  29. Hurley, J. V. & Boos, W. R. Interannual variability of monsoon precipitation and local subcloud equivalent potential temperature. J. Clim. 26, 9507–9527 (2013).

    Article  Google Scholar 

  30. Emanuel, K. A. On thermally direct circulation in moist atmospheres. J. Atmos. Sci. 52, 1529–1534 (1995).

    Article  Google Scholar 

  31. Lindzen, R. S. & Nigam, S. On the role of sea surface temperature gradients in forcing winds and convergence in the tropics. J. Atmos. Sci. 44, 2418–2436 (1985).

    Article  Google Scholar 

  32. Prive, N. & Plumb, A. Monsoon dynamics with interactive forcing. Part I: Axisymmetric studies. J. Atmos. Sci. 64, 1417–1430

  33. Sardeshmukh, P. D. & Hoskins, B. J. The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci. 45, 1228–1251 (1988).

    Article  Google Scholar 

  34. Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrological cycle. Nature 419, 224–232 (2002).

    Google Scholar 

  35. Ma, D., Boos, W. R. & Kuang, Z. Effects of orography and surface heat fluxes on the South Asian Summer Monsoon. J. Clim. 27, 6647–6659 (2014).

    Article  Google Scholar 

  36. Byrne, M. & O’Gorman, P. Land–ocean warming contrast over a wide range of climates: Convective quasi-equilibrium theory and idealized simulations. J. Clim. 26, 4000–4016 (2013).

    Article  Google Scholar 

  37. McLandress, C. et al. Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. J. Clim. 24, 1850–1868 (2011).

    Article  Google Scholar 

  38. Polvani, L. M., Waugh, D. W., Correa, G. & Son, S-W. Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Clim. 24, 795–812 (2011).

    Article  Google Scholar 

  39. Perlwitz, J. Tug of war on the jet stream. Nature Clim. Change 1, 29–31 (2012).

    Article  Google Scholar 

  40. Held, I. M. Large-scale dynamics and global warming. Bull. Am. Meteorol. Soc. 74, 228–241 (1993).

    Article  Google Scholar 

  41. Butler, A. H., Thompson, D. W. J. & Heikes, R. The steady-state atmospheric circulation response to climate change-like thermal forcings in a simple general circulation model. J. Clim. 23, 3474–3496 (2010).

    Article  Google Scholar 

  42. Bollasina, M. A., Ming, Y. & Ramaswamy, V. Anthropogenic aerosols and the weakening of the South Asian Monsoon. Science 334, 502–505 (2011).

    Article  Google Scholar 

  43. Li, X., Ting, M., Li, C. & Henderson, N. Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J. Clim. http://dx.doi.org/10.1175/JCLI-D-14-00559.1 (2015)

  44. Sardeshmukh, P. D. & Hoskins, B. J. Spatial smoothing on the sphere. Mon. Weath. Rev. 112, 2524–2529 (1984).

    Article  Google Scholar 

  45. Seager, R. & Henderson, N. Diagnostic computation of moisture budgets in the ERA-Interim reanalysis with reference to analysis of CMIP-archived atmospheric model data. J. Clim. 26, 7876–7901 (2013).

    Article  Google Scholar 

  46. Dee, D. P. et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  47. Li, J. P. & Zeng, Q. C. A unified monsoon index. Geophys. Res. Lett. 29, 1151–1154 (2002).

    Article  Google Scholar 

  48. Stevens, B. et al. Atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Model. Earth Syst. 5, 146–172 (2013).

    Article  Google Scholar 

  49. Neale, R. & Hoskins, B. J. A standard test for AGCMs including their physical parameterizations. Part I: The proposal. Atmos. Sci. Lett. 1, 101–107 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

T.A.S. and A.V. are supported by the David and Lucile Packard Foundation. T.A.S. acknowledges support from the National Science Foundation (Grant AGS-125520). We thank I. Simpson, R. Seager, M. Ting and A. Sobel for helpful discussions and N. Henderson and H. Liu for help downloading the CMIP5 data. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups (listed in the Supplementary Methods) for producing and making available their model output. For CMIP the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

Authors and Affiliations

Authors

Contributions

T.A.S. designed the study, performed the analysis and wrote the manuscript. A.V. and T.A.S. performed the aquaplanet model simulations. Both authors discussed and interpreted the results and edited the manuscript.

Corresponding author

Correspondence to T. A. Shaw.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6335 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaw, T., Voigt, A. Tug of war on summertime circulation between radiative forcing and sea surface warming. Nature Geosci 8, 560–566 (2015). https://doi.org/10.1038/ngeo2449

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2449

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing