Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A global transition to ferruginous conditions in the early Neoproterozoic oceans

Abstract

Eukaryotic life expanded during the Proterozoic eon1, 2.5 to 0.542 billion years ago, against a background of fluctuating ocean chemistry2,3,4. After about 1.8 billion years ago, the global ocean is thought to have been characterized by oxygenated surface waters, with anoxic and sulphidic waters in middle depths along productive continental margins and anoxic and iron-containing (ferruginous) deeper waters5,6,7. The spatial extent of sulphidic waters probably varied through time5,6, but this surface-to-deep redox structure is suggested to have persisted until the first Neoproterozoic glaciation about 717 million years ago8,9,10,11. Here we report an analysis of ocean redox conditions throughout the Proterozoic using new and existing iron speciation and sulphur isotope data from multiple cores and outcrops. We find a global transition from sulphidic to ferruginous mid-depth waters in the earliest Neoproterozoic, coincident with the amalgamation of the supercontinent Rodinia at low latitudes. We suggest that ferruginous conditions were initiated by an increase in the oceanic influx of highly reactive iron relative to sulphate, driven by a change in weathering regime and the uptake of sulphate by extensive continental evaporites on Rodinia. We propose that this transition essentially detoxified ocean margin settings, allowing for expanded opportunities for eukaryote diversification following a prolonged evolutionary stasis before one billion years ago.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stratigraphy and geochemical analyses for the 1.0 Ga Huainan succession.
Figure 2: Fe speciation data for the 1.0 Ga Huainan Basin, the 0.89–0.79 Ga Amundsen Basin, the 0.84–0.77 Ga Amadeus and Officer basins, and the 0.74 Ga Svalbard Basin.
Figure 3: Data compilation from 2 Ga to the Sturtian glaciation.

Similar content being viewed by others

References

  1. Knoll, A. H., Javaux, E. J., Hewitt, D. & Cohen, P. Eukaryotic organisms in Proterozoic oceans. Phil. Trans. R. Soc. B 361, 1023–1038 (2006).

    Article  Google Scholar 

  2. Anbar, A. D. & Knoll, A. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science 297, 1137–1142 (2002).

    Article  Google Scholar 

  3. Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields-Zhou, G. A. & Butterfield, N. J. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geosci. 7, 257–265 (2014).

    Article  Google Scholar 

  4. Mentel, M. & Martin, W. Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry. Phil. Trans. R. Soc. B 363, 2717–2729 (2008).

    Article  Google Scholar 

  5. Poulton, S. W., Fralick, P. W. & Canfield, D. E. Spatial variability in oceanic redox structure 1.8 billion years ago. Nature Geosci. 3, 486–490 (2010).

    Article  Google Scholar 

  6. Poulton, S. W. & Canfield, D. E. Ferruginous conditions: A dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).

    Article  Google Scholar 

  7. Planavsky, N. J. et al. Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature 477, 448–451 (2011).

    Article  Google Scholar 

  8. Canfield, D. E. et al. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science 321, 949–952 (2008).

    Article  Google Scholar 

  9. Dahl, T. W. et al. Molybdenum evidence for expansive sulfidic water masses in 750 Ma oceans. Earth Planet. Sci. Lett. 311, 264–274 (2011).

    Article  Google Scholar 

  10. Johnston, D. T. et al. An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA. Earth Planet. Sci. Lett. 290, 64–73 (2010).

    Article  Google Scholar 

  11. Thomson, D., Rainbird, R. H., Planavsky, N., Lyons, T. W. & Bekker, A. Chemostratigraphy of the Shaler Supergroup, Victoria Island, NW Canada: A record of ocean composition prior to the Cryogenian glaciations. Precambr. Res. 263, 232–245 (2015).

    Article  Google Scholar 

  12. Canfield, D. E., Poulton, S. W. & Narbonne, G. M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315, 92–95 (2007).

    Article  Google Scholar 

  13. Kendall, B. et al. Pervasive oxygenation along late Archaean ocean margins. Nature Geosci. 3, 647–652 (2010).

    Article  Google Scholar 

  14. Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998).

    Article  Google Scholar 

  15. Poulton, S. W., Fralick, P. W. & Canfield, D. E. The transition to a sulphidic ocean 1.84 billion years ago. Nature 431, 173–177 (2004).

    Article  Google Scholar 

  16. Raiswell, R. & Canfield, D. E. The iron biogeochemical cycle past and present. Geochem. Perspect. 1, 1–2 (2012).

    Article  Google Scholar 

  17. Poulton, S. W. & Canfield, D. E. Development of a sequential extraction procedure for iron: Implications for iron partitioning in continentally derived particulates. Chem. Geol. 214, 209–221 (2005).

    Article  Google Scholar 

  18. Poulton, S. W. & Raiswell, R. The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition. Am. J. Sci. 302, 774–805 (2002).

    Article  Google Scholar 

  19. Tang, Q. et al. Organic-walled microfossils from the early Neoproterozoic Liulaobei Formation in the Huainan region of North China and their biostratigraphic significance. Precambr. Res. 236, 157–181 (2013).

    Article  Google Scholar 

  20. Li, Z-X., Evans, D. A. D. & Halverson, G. P. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland. Sediment. Geol. 294, 219–232 (2013).

    Article  Google Scholar 

  21. Spencer, C. J. et al. Proterozoic onset of crustal reworking and collisional tectonics: Reappraisal of the zircon oxygen isotope record. Geology 42, 451–454 (2014).

    Article  Google Scholar 

  22. Shields, G. A normalised seawater strontium isotope curve: Possible implications for Neoproterozoic-Cambrian weathering rates and the further oxygenation of the Earth. eEarth 2, 35–42 (2007).

    Article  Google Scholar 

  23. Evans, D. A. D. Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes. Nature 444, 51–55 (2006).

    Article  Google Scholar 

  24. Gorjan, P., Veevers, J. & Walter, M. Neoproterozoic sulfur-isotope variation in Australia and global implications. Precambr. Res. 100, 151–179 (2000).

    Article  Google Scholar 

  25. Spear, N. et al. Analyses of fluid inclusions in Neoproterozoic marine halite provide oldest measurement of seawater chemistry. Geology 42, 103–106 (2014).

    Article  Google Scholar 

  26. Ries, J. B., Fike, D. A., Pratt, L. M., Lyons, T. W. & Grotzinger, J. P. Superheavy pyrite (δ34Spyr > δ34SCAS) in the terminal Proterozoic Nama Group, southern Namibia: A consequence of low seawater sulfate at the dawn of animal life. Geology 37, 743–746 (2009).

    Article  Google Scholar 

  27. Peng, Y. et al. Widespread contamination of carbonate-associated sulfate by present-day secondary atmospheric sulfate: Evidence from triple oxygen isotopes. Geology 10.1130/G35852.1 http://dx.doi.org/10.1130/G35852.1 (2014).

  28. Kah, L. C., Lyons, T. W. & Frank, T. D. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431, 834–838 (2004).

    Article  Google Scholar 

  29. Geboy, N. J. et al. Re–Os age constraints and new observations of Proterozoic glacial deposits in the Vazante Group, Brazil. Precambr. Res. 238, 199–213 (2013).

    Article  Google Scholar 

  30. Embley, T. M. Multiple secondary origins of the anaerobic lifestyle in eukaryotes. Phil. Trans. R. Soc. B 361, 1055–1067 (2006).

    Article  Google Scholar 

  31. Adam, Z. R., Mogk, D. W., Skidmore, M. & Butterfield, N. J. Microfossils from the Greyson Formation, Lower Belt Supergroup: Support for early Mesoproterozoic biozonation. Geol. Soc. Am. Abstr. Programs 46, 71 (2014).

    Google Scholar 

  32. Clarkson, M., Poulton, S., Guilbaud, R. & Wood, R. Assessing the utility of Fe/Al and Fe-speciation to record water column redox conditions in carbonate-rich sediments. Chem. Geol. 382, 111–122 (2014).

    Article  Google Scholar 

  33. Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M. & Berner, R. A. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149–155 (1986).

    Article  Google Scholar 

  34. Goldberg, T., Shields, G. A. & Newton, R. J. Analytical constraints on the measurement of the sulfur isotopic composition and concentration of trace sulfate in phosphorites: Implications for sulfur isotope studies of carbonate and phosphate rocks. Geostand. Geoanal. Res. 35, 161–174 (2011).

    Article  Google Scholar 

  35. Shen, Y., Knoll, A. H. & Walter, M. R. Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature 423, 632–635 (2003).

    Article  Google Scholar 

  36. Gilleaudeau, G. J. & Kah, L. C. Oceanic molybdenum drawdown by epeiric sea expansion in the Mesoproterozoic. Chem. Geol. 356, 21–37 (2013).

    Article  Google Scholar 

  37. Sperling, E. A., Halverson, G. P., Knoll, A. H., Macdonald, F. A. & Johnston, D. T. A basin redox transect at the dawn of animal life. Earth Planet. Sci. Lett. 371–372, 143–155 (2013).

    Article  Google Scholar 

  38. Shen, Y., Canfield, D. E. & Knoll, A. H. Middle Proterozoic ocean chemistry: Evidence from the McArthur Basin, northern Australia. Am. J. Sci. 302, 81–109 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to P. Green, J. Davis and E. Avbelj for technical support. We thank S. Bottrell and R. Newton for constructive discussions. This work was supported by NERC through its research program ‘Long-term Co-evolution of Life and the Planet’ (Project NE/I005978/1), and the 973 program of the Ministry of Science and Technology of China (2013CB835000).

Author information

Authors and Affiliations

Authors

Contributions

R.G., S.W.P., G.A.S-Z. and M.Z. collected samples. R.G. analysed samples and interpreted data. R.G. and S.W.P. wrote the manuscript, with significant contributions from all co-authors.

Corresponding author

Correspondence to Romain Guilbaud.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1254 kb)

Supplementary Table 1

Supplementary Information (XLSX 71 kb)

Supplementary Table 3

Supplementary Information (XLSX 149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guilbaud, R., Poulton, S., Butterfield, N. et al. A global transition to ferruginous conditions in the early Neoproterozoic oceans. Nature Geosci 8, 466–470 (2015). https://doi.org/10.1038/ngeo2434

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2434

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology