Abstract
A powerful influence on the weather that we experience on the ground can be exerted by the stratosphere. This highly stratified layer of Earth's atmosphere is found 10 to 50 kilometres above the surface and therefore above the weather systems that develop in the troposphere, the lowest layer of the atmosphere. The troposphere is dynamically coupled to fluctuations in the speed of the circumpolar westerly jet that forms in the winter stratosphere: a strengthening circumpolar jet causes a poleward shift in the storm tracks and tropospheric jet stream, whereas a weakening jet causes a shift towards the equator. Following a weakening of the stratospheric jet, impacts on the surface weather include a higher likelihood of extremely low temperature over northern Europe and the eastern USA. Eddy feedbacks in the troposphere amplify the surface impacts, but the mechanisms underlying these dynamics are not fully understood. The same dynamical relationships act at very different timescales, ranging from daily variations to longer-term climate trends, suggesting a single unifying mechanism across timescales. Ultimately, an improved understanding of the dynamical links between the stratosphere and troposphere is expected to lead to improved confidence in both long-range weather forecasts and climate change projections.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Missing eddy feedback may explain weak signal-to-noise ratios in climate predictions
npj Climate and Atmospheric Science Open Access 11 July 2022
-
Boreal winter stratospheric climatology in EC-EARTH: CMIP6 version
Climate Dynamics Open Access 10 June 2022
-
Modulation of a long-lasting extreme cold event in Siberia by a minor sudden stratospheric warming and the dynamical mechanism involved
Climate Dynamics Open Access 07 June 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Gerber, E. P. et al. Assessing and understanding the impact of stratospheric dynamics and variability on the Earth system. Bull. Am. Meteorol. Soc. 93, 845–859 (2012).
Charney, J. G. & Drazin, P. G. Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res. 66, 83–109 (1961).
McIntyre, M. E. & Palmer, T. N. The “surf-zone” in the stratosphere. J. Atmos. Terr. Phys. 46, 825–849 (1984).
Labitzke, K. & Kunze, M. On the remarkable Arctic winter in 2008/2009. J. Geophys. Res. 114, D00I02 (2009).
Butler, A. H. et al. Defining sudden stratospheric warmings. Bull. Am. Meteorol. Soc. http://dx.doi.org/10.1175/BAMS-D-13-00173.1 (2015).
Thompson, D. W. J., Baldwin, M. P. & Solomon, S. Stratosphere-troposphere coupling in the Southern Hemisphere. J. Atmos. Sci. 62, 708–715 (2005).
Scaife, A. A. & James, I. N. Response of the stratosphere to interannual variability of tropospheric planetary waves. Q. J. R. Meteorol. Soc. 126, 275–297 (2000).
Hitchcock, P. & Simpson, I. R. 2014: The downward influence of stratospheric sudden warmings. J. Atmos. Sci. 71, 3856–3876 (2014).
Kunz, T. & Greatbatch, R. J. On the Northern Annular Mode surface signal associated with stratospheric variability. J. Atmos. Sci. 70, 2103–2118 (2013).
Baldwin, M. P. & Dunkerton, T. J. Stratospheric harbingers of anomalous weather regimes. Science 294, 581–584 (2001).
Black, R. X. Stratospheric forcing of surface climate in the Arctic oscillation. J. Clim. 15, 268–277 (2002).
Thompson, D. W. J., Baldwin, M. P. & Wallace J. M. Stratospheric connection to Northern Hemisphere wintertime weather: implications for prediction. J. Clim. 15, 1421–1428 (2002).
Scaife, A. A., Knight, J. R., Vallis, G. K. & Folland, C. K. A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys. Res. Lett. 32, 1–5 (2005).
Kolstad, E. W., Breiteig, T. & Scaife, A. A. The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Q. J. R. Meteorol. Soc. 136, 886–893 (2010).
Butchart, N. et al. Multimodel climate and variability of the stratosphere. J. Geophys. Res. 116, D05102 (2011).
Gerber, E. P. et al. Stratosphere-troposphere coupling and annular mode variability in chemistryclimate models. J. Geophys. Res. 115, D00M06 (2010).
Baldwin, M. P. & Dunkerton, T. J. Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res. 104, 30937–30946 (1999).
Scaife, A. A. et al. Climate change projections and stratosphere-troposphere interaction. Clim. Dynam. 38, 2089–2097 (2012).
Sigmond, M., Scinocca, J. F. & Kushner, P. J. Impact of the stratosphere on tropospheric climate change. Geophys. Res. Lett. 35, L12706 (2008).
Polvani, L. M., Waugh, D. W., Correa, G. J. P. & Son, S-W. Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Clim. 24, 795–812 (2011).
Karpechko, A. Y. & Manzini, E. Stratospheric influence on tropospheric climate change in the Northern Hemisphere. J. Geophys. Res. 117, D05133 (2012).
Hardiman, S. C., Butchart, N., Hinton, T. J., Osprey, S. M. & Gray, L. J. The effect of a wellresolved stratosphere on surface climate: Differences between CMIP5 simulations with high and low top versions of the Met Office climate model. J. Clim. 25, 7083–7099 (2012).
Bell, C. J., Gray, L. J., Charlton-Perez, A. J., Joshi, M. M. & Scaife, A. A. Stratospheric communication of El Niño teleconnections to European winter. J. Clim. 22, 4083–4096 (2009).
Cagnazzo, C. & Manzini, E. Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European region. J. Clim. 22, 1223–1238 (2009).
Ineson, S. & Scaife, A. A. The role of the stratosphere in the European climate response to El Niño. Nature Geosci. 2, 32–36 (2009).
Haigh, J. D. The impact of solar variability on climate. Science 272, 981–984 (1996).
Gray, L. J. et al. Solar influences on climate. Rev. Geophys. 48, RG4001 (2010).
Ineson, S. et al. Solar forcing of winter climate variability in the Northern Hemisphere. Nature Geosci. 4, 753–757 (2011).
Stenchikov, G. et al. Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion. J. Geophys. Res. 107, 4803 (2002).
Driscoll, S., Bozzo, A., Gray, L. J., Robock, A. & Stenchikov, G. Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions. J. Geophys. Res. 117, D17105 (2012).
Haigh, J. D., Blackburn, M. & Day, R. The response of tropospheric circulation to perturbations in lower-stratospheric temperature. J. Clim. 18, 3672–3685 (2005).
Kodera, K. & Kuroda, Y. A possible mechanism of solar modulation of the spatial structure of the North Atlantic Oscillation. J. Geophys. Res. 110, D02111 (2005).
Christiansen, B. Volcanic eruptions, large-scale modes in the Northern Hemisphere, and the El Niño- Southern Oscillation. J. Clim. 21, 910–922 (2008).
Simpson, I. R., Blackburn, M. & Haigh, J. D. The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J. Atmos. Sci. 66, 1347–1365 (2009).
Reichler, T., Kim, J., Manzini, E. & Kroger, J. A stratospheric connection to Atlantic climate variability. Nature Geosci. 5, 783–787 (2012).
Scaife, A. A. et al. A mechanism for lagged North Atlantic climate response to solar variability. Geophys. Res. Lett. 40, 434–439 (2013).
Butchart, N. The Brewer-Dobson circulation. Rev. Geophys. 52, 157–184 (2014).
Thompson, D. W. J. & Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 296, 895–899 (2002).
Arblaster, J. M. & Meehl, G. A. Contributions of external forcings to Southern Annular Mode trends. J. Clim. 19, 2896–2905 (2006).
Son, S-W. et al. Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J. Geophys. Res. 115, D00M07 (2010).
Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geosci. 4, 741–749 (2011).
Kang, S. M., Polvani, L. M., Fyfe, J. C. & Sigmond, M. Impact of polar ozone depletion on subtropical precipitation. Science 332, 951–954 (2011).
Plumb, R. A. & Semeniuk, K. Downward migration of extratropical zonal wind anomalies. J. Geophys. Res. 108, 4223 (2003).
Norton, W. A. Sensitivity of Northern Hemisphere surface climate to simulation of the stratospheric polar vortex. Geophys. Res. Lett. 30, 1627 (2003).
Hardiman, S. C. & Haynes, P. H. Dynamical sensitivity of the stratospheric circulation and downward influence of upper level perturbations. J. Geophys. Res. 113, D23103 (2008).
Scaife, A. A. & Knight, J. R. Ensemble simulations of the cold European winter of 2005–2006. Q. J. R. Meteorol. Soc. 134, 1647–1659 (2008).
Haynes, P. H., McIntyre, M. E., Shepherd, T. G., Marks, C. J. & Shine, K. P. On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci. 48, 651–678 (1991).
Hartley, D. E., Villarin, J. T., Black, R. X. & Davis, C. A. A new perspective on the dynamical link between the stratosphere and troposphere. Nature 391, 471–474 (1998).
Thompson, D. W. J., Furtado, J. C. & Shepherd, T. G. On the tropospheric response to anomalous stratospheric wave drag and radiative heating. J. Atmos. Sci. 63, 2616–2629 (2006).
Charlton, A. J., O'neill, A., Berrisford, P. & Lahoz, W. A. Can the dynamical impact of the stratosphere on the troposphere be described by large-scale adjustment to the stratospheric PV distribution? Q. J. R. Meteorol. Soc. 131, 525–543 (2005).
Mitchell, D. M., Gray, L. J., Anstey, J., Baldwin, M. P. & Charlton-Perez, A. J. The influence of stratospheric vortex displacements and splits on surface climate. J. Clim. 26, 2668–2682 (2013).
Song, Y. C. & Robinson, W. A. Dynamical mechanisms for stratospheric influences on the troposphere. J. Atmos. Sci. 61, 1711–1725 (2004).
Garfinkel, C. I., Waugh, D. W. & Gerber, E. P. The effect of tropospheric jet latitude on coupling between the stratospheric polar vortex and the troposphere. J. Clim. 26, 2077–2095 (2013).
Maycock, A. C., Joshi, M. M., Shine, K. P. & Scaife, A. A. The circulation response to idealized changes in stratospheric water vapor. J. Clim. 26, 545–561 (2012).
Gerber, E. P., Polvani, L. M. & Ancukiewicz, D. Annular mode time scales in the Intergovernmental Panel on Climate Change Fourth Assessment Report models. Geophys. Res. Lett. 35, L22707 (2008).
Mudryk, L. R. & Kushner, P. J. A method to diagnose sources of annular mode time scales. J. Geophys. Res. 116, D14114 (2011).
Lorenz, D. J. & Hartmann, D. L. Eddy-zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci. 58, 3312–3327 (2001).
Lorenz, D. J. & Hartmann, D. L. Eddy-zonal flow feedback in the Northern Hemisphere winter. J. Clim. 16, 1212–1227 (2003).
Kidston, J., Renwick, J. A., Frierson, D. M. W. & Vallis, G. K. Observations, simulations, and dynamics of jet stream variability and annular modes. J. Clim. 23, 6186–6199 (2010).
Blanco-Fuentes, J. & Zurita-Gotor, P. The driving of baroclinic anomalies at different timescales. Geophys. Res. Lett. 38, L23805 (2011).
Simpson, I. R., Shepherd, T. G., Hitchcock, P. & Scinocca, J. F. Southern Annular Mode dynamics in observations and models. Part II: eddy feedbacks. J. Clim. 26, 5220–5241 (2013).
McLandress, C., Shepherd, T. G. et al. Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. J. Clim. 24, 1850–1868 (2011).
Hitchcock, P., Shepherd, T. G. & Manney, G. L. Statistical characterization of Arctic polar-night jet oscillation events. J. Clim. 26, 2096–2116 (2013).
Hitchcock, P., Shepherd, T. G., Taguchi, M., Yoden, S. & Noguchi, S. Lower-stratospheric radiative damping and polar-night jet oscillation events. J. Atmos. Sci. 70, 1391–1408 (2013).
Limpasuvan, V. & Hartmann, D. L. Wave-maintained annular modes of climate variability. J. Clim. 13, 4414–4429 (2000).
Perlwitz, J. & Harnik, N. Downward coupling between the stratosphere and troposphere: The relative roles of wave and zonal mean processes. J. Clim. 17, 4902–4909 (2004).
Woollings, T., Charlton-Perez, A., Ineson, S., Marshall, A. G. & Masato, G. Associations between stratospheric variability and tropospheric blocking. J. Geophys. Res. 115, D06108 (2010).
Tomassini, L., Gerber, E. P., Baldwin, M. P., Bunzel, F. & Giorgetta, M. The role of stratospheretroposphere coupling in the occurrence of extreme winter cold spells over northern Europe. J. Adv. Model. Earth Syst. 4, M00A03 (2012).
Sigmond, M., Scinocca, J. F., Kharin, V. V. & Shepherd, T. G. Enhanced seasonal forecast skill following stratospheric sudden warmings. Nature Geosci. 6, 98–102 (2013).
Scaife, A. A., Folland, C. K., Alexander, L. V., Moberg, A. & Knight, J. R. European climate extremes and the North Atlantic Oscillation. J. Clim. 21, 72–83 (2008).
Greatbatch, R. J., Gollan, G., Jung, T. & Kunz, T. Tropical origin of the severe European winter of 1962/1963. Q. J. R. Meteorol. Soc. 141, 153–165 (2015).
Fereday, D. R., Maidens, A., Arribas, A., Scaife, A. A. & Knight, J. R. Seasonal forecasts of Northern Hemisphere winter 2009/10. Environ. Res. Lett. 7, 034031 (2012).
Anstey, J. A. & Shepherd, T. G. High-latitude influence of the quasi-biennial oscillation. Q. J. R. Metoerol. Soc. 140, 1–21 (2014).
Huntingford, C. et al. Potential influences on the United Kingdom's floods of winter 2013/14. Nature Clim. Change 4, 769–777 (2014).
O'Callaghan, A., Joshi, M., Stevens, D. & Mitchell, D. The effects of different sudden stratospheric warming type on the ocean. Geophys. Res. Lett. 41, 7739–7745 (2014).
Lenton, A. et al. Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification. Geophys. Res. Lett. 36, L12606 (2009).
Cagnazzo, C., Manzini, E., Fogli, P. G., Vichi, M. & Davini, P. Role of stratospheric dynamics in the ozone-carbon connection in the Southern Hemisphere. Clim. Dynam. 41, 3039–3054 (2013).
Scaife, A. A. et al. Predictability of the quasi-biennial oscillation and its northern winter teleconnection on seasonal to decadal timescales. Geophys. Res. Lett. 41, 1752–1758 (2014).
Manzini, E. et al. Northern winter climate change: Assessment of uncertainty in CMIP5 projections related to stratosphere-troposphere coupling. J. Geophys. Res. 119, 7979–7998 (2014).
Plougonven, R. & Zhang, F. Internal gravity waves from atmospheric jets and fronts. Rev. Geophys. 52, 33–76 (2014).
Baldwin, M. P. et al. Stratospheric memory and skill of extended-range weather forecasts. Science 301, 636–640 (2003).
Marshall, A. G. & Scaife, A. A. Improved predictability of stratospheric sudden warming events in an atmospheric general circulation model with enhanced stratospheric resolution. J. Geophys. Res. 115, D16114 (2010).
Hardiman, S. C. et al. Improved predictability of the troposphere using stratospheric final warmings. J. Geophys. Res. 116, D18113 (2011).
Charron, M. et al. The Stratospheric extension of the Canadian global deterministic medium-range weather forecasting system and its impact on tropospheric forecasts. Mon. Weather Rev. 140, 1924–1944 (2012).
Riddle, E. E., Butler, A. H., Furtado, J. C., Cohen, J. L. & Kumar, A. CFSv2 ensemble prediction of the wintertime Arctic Oscillation. Clim. Dynam. 41, 1099–1116 (2013).
Scaife, A. A. et al. Skilful long range prediction of European and North American winters. Geophys. Res. Lett. 41, 2514–2519 (2014).
Stockdale, T. N., Molteni, F. & Ferranti, L. Atmospheric initial conditions and the predictability of the Arctic Oscillation. Geophys. Res. Lett. 42, 1173–1179 (2015).
Mukougawa, H., Hirooka, T. & Kuroda, Y. Influence of stratospheric circulation on the predictability of the tropospheric Northern Annular Mode. Geophys. Res. Lett. 36, L08814 (2009).
Seviour, W. J. M. et al. Skillful seasonal prediction of the Southern Annular Mode and Antarctic ozone. J. Clim. 27, 7462–7474 (2014).
Goddard, L. et al. A verification framework for interannual-to-decadal predictions experiments. Clim. Dynam. 40, 245–272 (2013).
Smith, D. M., Scaife, A. A. & Kirtman, B. P. What is the current state of scientific knowledge with regard to seasonal and decadal forecasting? Environ. Res. Lett. 7, 015602 (2012).
Gerber, E. P., Orbe, C. & Polvani, L. M. Stratospheric influence on the tropospheric circulation revealed by idealized ensemble forecasts. Geophys. Res. Lett. 36, L24801 (2009).
Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability. Clim. Dynam. 38, 527–546 (2012).
Morgenstern, O. et al. Anthropogenic forcing of the Northern Annular Mode in CCMVal-2 models. J. Geophys. Res. 115, D00M03 (2009).
Osprey, S. M. et al. The climatology of the middle atmosphere in a vertically extended version of the Met Office's climate model. Part II: variability. J. Atmos. Sci. 67, 3637–3651 (2010).
Andrews, D. G., Holton, J. R. & Leovy, C. B. Middle Atmosphere Dynamics Section 3.5, 127–130 (Academic Press 1987).
Haynes, P. H. Stratospheric dynamics. Annu. Rev. Fluid Mech. 37, 263–293 (2005).
Haynes, P. H. & Shepherd, T. G. The importance of surface pressure changes in the response of the atmosphere to zonally-symmetric thermal and mechanical forcing. Q. J. R. Meteorol. Soc. 115, 1181–1208 (1989).
Ambaum, M. H. P. & Hoskins, B. J. The NAO troposphere-stratosphere connection. J. Clim. 15, 1969–1978 (2002).
Thompson, D. W. J. & Birner, T. On the linkages between the tropospheric isentropic slope and eddy fluxes of heat during Northern Hemisphere winter. J. Atmos. Sci. 69, 1811–1823 (2012).
Acknowledgements
J.K. was partly supported by the Australian Research Council Discovery Early Career Research Award ARC DE120102645, and the Australian Research Council Centre of Excellence in Climate System Science. The work of A.A.S., S.C.H. and N.B. was supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). All the authors thank E. Gerber for his thought-provoking and constructive comments on earlier versions of the manuscript. The generous assistance of S. Osprey and S. Ineson with the redrawing of Figs 1 and 2, respectively, is gratefully acknowledged. Thanks also to J. Arblaster, C. Cagnazzo, M. Machin, T. Reichler, and D. Thompson.
Author information
Authors and Affiliations
Contributions
J.K. and A.A.S. created the schematic of stratosphere–troposphere coupling processes, all authors contributed to writing the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Kidston, J., Scaife, A., Hardiman, S. et al. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nature Geosci 8, 433–440 (2015). https://doi.org/10.1038/ngeo2424
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ngeo2424
This article is cited by
-
Boreal winter stratospheric climatology in EC-EARTH: CMIP6 version
Climate Dynamics (2023)
-
Modulation of a long-lasting extreme cold event in Siberia by a minor sudden stratospheric warming and the dynamical mechanism involved
Climate Dynamics (2023)
-
A tropical stratopause precursor for sudden stratospheric warmings
Scientific Reports (2022)
-
Missing eddy feedback may explain weak signal-to-noise ratios in climate predictions
npj Climate and Atmospheric Science (2022)
-
Impacts, processes and projections of the quasi-biennial oscillation
Nature Reviews Earth & Environment (2022)