Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Future productivity and carbon storage limited by terrestrial nutrient availability


The size of the terrestrial sink remains uncertain. This uncertainty presents a challenge for projecting future climate–carbon cycle feedbacks1,2,3,4. Terrestrial carbon storage is dependent on the availability of nitrogen for plant growth5,6,7,8, and nitrogen limitation is increasingly included in global models9,10,11. Widespread phosphorus limitation in terrestrial ecosystems12 may also strongly regulate the global carbon cycle13,14,15, but explicit considerations of phosphorus limitation in global models are uncommon16. Here we use global state-of-the-art coupled carbon–climate model projections of terrestrial net primary productivity and carbon storage from 1860–2100; estimates of annual new nutrient inputs from deposition, nitrogen fixation, and weathering; and estimates of carbon allocation and stoichiometry to evaluate how simulated CO2 fertilization effects could be constrained by nutrient availability. We find that the nutrients required for the projected increases in net primary productivity greatly exceed estimated nutrient supply rates, suggesting that projected productivity increases may be unrealistically high. Accounting for nitrogen and nitrogen–phosphorus limitation lowers projected end-of-century estimates of net primary productivity by 19% and 25%, respectively, and turns the land surface into a net source of CO2 by 2100. We conclude that potential effects of nutrient limitation must be considered in estimates of the terrestrial carbon sink strength through the twenty-first century.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Change in global NPP and terrestrial C storage from CMIP5 model projections.
Figure 2: Multi-model mean terrestrial C storage and changes in C storage with different assumptions about nutrient limitation.


  1. Ballantyne, A. P., Alden, C. B., Miller, J. B., Tans, P. P. & White, J. W. C. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488, 70–72 (2012).

    Article  Google Scholar 

  2. Ahlström, A., Schurgers, G., Arneth, A. & Smith, B. Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections. Environ. Res. Lett. 7, 044008 (2012).

    Article  Google Scholar 

  3. Arora, V. K. et al. Carbon-concentration and carbon-climate feedbacks in CMIP5 Earth System Models. J. Clim. 26, 5289–5314 (2013).

    Article  Google Scholar 

  4. Anav, A. et al. Evaluating the land and ocean components of the global carbon cycle in the CMIP5 Earth System Models. J. Clim. 26, 6801–6843 (2013).

    Article  Google Scholar 

  5. Oren, R. et al. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411, 469–472 (2001).

    Article  Google Scholar 

  6. Hungate, B. A., Dukes, J. S., Shaw, R., Luo, Y. & Field, C. B. Nitrogen and climate change. Science 302, 1512–1513 (2003).

    Article  Google Scholar 

  7. Wang, Y. P. & Houlton, B. Z. Nitrogen constraints on terrestrial carbon uptake: Implications for the global carbon-climate feedback. Geophys. Res. Lett. 36, L24403 (2009).

    Article  Google Scholar 

  8. Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E. & McMurtrie, R. E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl Acad. Sci. USA 107, 19368–19373 (2010).

    Article  Google Scholar 

  9. Thornton, P. E., Lamarque, J. F., Rosenbloom, N. A. & Mahowald, N. M. Influence of carbon–nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Glob. Biogeochem. Cycles 21, GB4018 (2007).

    Article  Google Scholar 

  10. Gerber, S., Hedin, L. O., Oppenheimer, M., Pacala, S. W. & Shevliakova, E. Nitrogen cycling and feedbacks in a global dynamic land model. Glob. Biogeochem. Cycles 24, GB1001 (2010).

    Google Scholar 

  11. Zaehle, S., Friedlingstein, P. & Friend, A. D. Terrestrial nitrogen feedbacks may accelerate future climate change. Geophys. Res. Lett. 37, L01401 (2010).

    Article  Google Scholar 

  12. Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).

    Article  Google Scholar 

  13. Cleveland, C. C. et al. Patterns of new versus recycled primary production in the terrestrial biosphere. Proc. Natl Acad. Sci. USA 110, 12733–12737 (2013).

    Article  Google Scholar 

  14. Peñuelas, J. et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Commun. 4, 2934 (2013).

    Article  Google Scholar 

  15. Zhang, Q., Wang, Y. P., Matear, R. J., Pitman, A. J. & Dai, Y. J. Nitrogen and phosphorous limitations significantly reduce future allowable CO2 emissions. Geophys. Res. Lett. 41, 632–637 (2014).

    Article  Google Scholar 

  16. Wang, Y. P., Law, R. M. & Pak, B. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7, 2261–2282 (2010).

    Article  Google Scholar 

  17. Todd-Brown, K. E. O. et al. Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences 11, 2341–2356 (2014).

    Article  Google Scholar 

  18. Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).

    Article  Google Scholar 

  19. Finzi, A. C. et al. Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Ecology 87, 15–25 (2006).

    Article  Google Scholar 

  20. Clark, D. A., Clark, D. B. & Oberbauer, S. F. Field-quantified responses of tropical rainforest aboveground productivity to increasing CO2 and climatic stress, 1997–2009. J. Geophys. Res. 118, 783–794 (2013).

    Article  Google Scholar 

  21. Melillo, J. M. et al. Soil warming, carbon–nitrogen interactions, and forest carbon budgets. Proc. Natl Acad. Sci. USA 108, 9508–9512 (2011).

    Article  Google Scholar 

  22. Lloyd, J., Bird, M. I., Veenendaal, E. M. & Kruijt, B. in Global Biogeochemical Cycles in the Climate System (eds Schulze, E-D. et al.) 95–114 (Academic Press, 2001).

    Book  Google Scholar 

  23. Chambers, J. & Silver, W. Some aspects of ecophysiological and biogeochemical responses of tropical forests to atmospheric change. Phil. Trans. R. Soc. Lond. B 359, 463–476 (2004).

    Article  Google Scholar 

  24. Drigo, B. et al. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2 . Proc. Natl Acad. Sci. USA 107, 10938–10942 (2010).

    Article  Google Scholar 

  25. Phillips, R. P., Finzi, A. C. & Bernhardt, E. S. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol. Lett. 14, 187–194 (2011).

    Article  Google Scholar 

  26. Vicca, S. et al. Fertile forests produce biomass more efficiently. Ecol. Lett. 15, 520–526 (2012).

    Article  Google Scholar 

  27. Cleveland, C. C. et al. Relationships among net primary productivity, nutrients and climate in tropical rain forest: A pan-tropical analysis. Ecol. Lett. 14, 939–947 (2011).

    Article  Google Scholar 

  28. Schuur, E. A. G. et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556–559 (2009).

    Article  Google Scholar 

  29. Koven, C. D. et al. Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl Acad. Sci. USA 108, 14769–14774 (2011).

    Article  Google Scholar 

  30. Carvalhais, N. et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 514, 213–217 (2014).

    Article  Google Scholar 

Download references


We appreciate suggestions from A. Ballantyne, G. Bonan, D. Lombardozzi, N. Mahowald and S. Vicca whose input clarified and improved this manuscript. The National Center for Atmospheric Research is sponsored by the National Science Foundation (NSF). This work was supported by NSF grant EF-1048481 to W.R.W. and a grant from the Andrew W. Mellon Foundation to C.C.C. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modeling, the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison, and the Global Organization for Earth System Science Portals.

Author information

Authors and Affiliations



W.R.W. and C.C.C. designed the study. W.R.W. coordinated the experiments and wrote the manuscript. W.K.S. provided nutrient input estimations. K.T-B. modified the CMIP5 simulation results to reflect the nutrient limitations. All authors contributed significantly to the final analysis and revisions of the manuscript.

Corresponding author

Correspondence to William R. Wieder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 37707 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wieder, W., Cleveland, C., Smith, W. et al. Future productivity and carbon storage limited by terrestrial nutrient availability. Nature Geosci 8, 441–444 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing