Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strong influence of westerly wind bursts on El Niño diversity


Despite the tremendous progress in the theory, observation and prediction of El Niño over the past three decades, the classification of El Niño diversity and the genesis of such diversity are still debated. This uncertainty renders El Niño prediction a continuously challenging task, as manifested by the absence of the large warm event in 2014 that was expected by many. We propose a unified perspective on El Niño diversity as well as its causes, and support our view with a fuzzy clustering analysis and model experiments. Specifically, the interannual variability of sea surface temperatures in the tropical Pacific Ocean can generally be classified into three warm patterns and one cold pattern, which together constitute a canonical cycle of El Niño/La Niña and its different flavours. Although the genesis of the canonical cycle can be readily explained by classic theories, we suggest that the asymmetry, irregularity and extremes of El Niño result from westerly wind bursts, a type of state-dependent atmospheric perturbation in the equatorial Pacific. Westerly wind bursts strongly affect El Niño but not La Niña because of their unidirectional nature. We conclude that properly accounting for the interplay between the canonical cycle and westerly wind bursts may improve El Niño prediction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The first three El Niño and La Niña clusters identified by the fuzzy clustering method.
Figure 2: Evolution of observed SST anomaly and WWB along the Equator from January 1961 to December 2010.
Figure 3: Evolution of SST anomaly and WWB along the Equator for the last 125 years of a 200-year model runs.
Figure 4: El Niño and La Niña patterns (left column) and surface-layer heat budgets (right column) from WWB-forced model run.
Figure 5: WWB and warm-water volume anomalies in 11 El Niño years since 1982.
Figure 6: Comparison of evolutions of zonal wind and SST anomaly during the first five months of 2014 and 1997.


  1. 1

    Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weath. Rev. 97, 163–172 (1969).

    Article  Google Scholar 

  2. 2

    Sarachik, E. S. & Cane, M. A. The El Niño–Southern Oscillation Phenomenon (Cambridge Univ. Press, 2010).

    Book  Google Scholar 

  3. 3

    Zebiak, S. E. & Cane, M. A. A model El Niño–Southern Oscillation. Mon. Weath. Rev. 115, 2262–2278 (1987).

    Article  Google Scholar 

  4. 4

    Jin, F. F. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci. 54, 811–829 (1997).

    Article  Google Scholar 

  5. 5

    Meinen, C. S. & McPhaden, M. J. Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Clim. 13, 3551–3559 (2000).

    Article  Google Scholar 

  6. 6

    Moore, A. M. & Kleeman, R. Stochastic forcing of ENSO by the intraseasonal oscillation. J. Clim. 12, 1199–1220 (1999).

    Article  Google Scholar 

  7. 7

    Thompson, C. J. & Battisti, D. S. A linear stochastic dynamical model of ENSO. Part I: Model development. J. Clim. 13, 2818–2832 (2000).

    Article  Google Scholar 

  8. 8

    Lengaigne, M. et al. Triggering of El Nino by westerly wind events in a coupled general circulation model. Clim. Dynam. 23, 601–620 (2004).

    Article  Google Scholar 

  9. 9

    Kessler, W. Is ENSO a cycle or a series of events? Geophy. Res. Lett. 29, (2002).

    Article  Google Scholar 

  10. 10

    Chen, D., Cane, M. A., Kaplan, A., Zebiak, S. E. & Huang, D. J. Predictability of El Niño over the past 148 years. Nature 428, 733–736 (2004).

    Article  Google Scholar 

  11. 11

    Chen, D., Zebiak, S. E., Busalacchi, A. J. & Cane, M. A. An improved procedure for El Niño forecasting: implications for predictability. Science 269, 1699–1702 (1995).

    Article  Google Scholar 

  12. 12

    Chen, D. & Cane, M. A. El Niño prediction and predictability. J. Comput. Phys. 227, 3625–3640 (2008).

    Article  Google Scholar 

  13. 13

    Fedorov, A. V., Hu, S., Lengaigne, M. & Guilyardi, E. The impact of westerly wind bursts and ocean initial state on the development and diversity of El Niño events. Clim. Dynam. 44, 1381–1401 (2014).

    Article  Google Scholar 

  14. 14

    Menkes, C. E. et al. About the role of Westerly Wind Events in the possible development of an El Niño in 2014. Geophys. Res. Lett. 41, 6476–6483 (2014).

    Article  Google Scholar 

  15. 15

    Rasmusson, E. M. & Carpenter, T. H. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Weath. Rev. 110, 354–384 (1982).

    Article  Google Scholar 

  16. 16

    Fu, C., Diaz, H. F. & Fletcher, J. O. Characteristics of the response of sea surface temperature in the central Pacific associated with warm episodes of the Southern Oscillation. Mon. Weath. Rev. 114, 1716–1738 (1986).

    Article  Google Scholar 

  17. 17

    Newman, M., Shin, S-I. & Alexander, M. A. Natural variation in ENSO flavors. J. Geophys. Res. 38, L14705 (2011).

    Google Scholar 

  18. 18

    Ashok, K., Behera, S. K., Rao, S. A., Weng, H. & Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. 112, C11007 (2007).

    Article  Google Scholar 

  19. 19

    Kug J-S., Jin, F-F. & An, S-I. Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Clim. 22, 1499–1515 (2009).

    Article  Google Scholar 

  20. 20

    Kug, J-S., Choi, J., An, S-I., Jin, F-F. & Wittenberg, A. T. Warm pool and cold tongue El Niño events as simulated by the GFDL CM2.1 coupled GCM. J. Clim. 23, 1226–1239 (2010).

    Article  Google Scholar 

  21. 21

    Yu, J. Y. & Kim, S. T. Identifying the types of major El Niño events since 1870. Int. J. Climatol. 33, 2105–2112 (2011).

    Article  Google Scholar 

  22. 22

    Lian, T. & Chen, D. An Evaluation of rotated EOF analysis and its application to tropical Pacific SST variability. J. Clim. 25, 5361–5373 (2012).

    Article  Google Scholar 

  23. 23

    Takahashi, K., Montecinos, A., Goubanova, K. & Dewitte, B. ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett. 38, L10704 (2011).

    Article  Google Scholar 

  24. 24

    Kim, H-S., Ho, C-H., Kim, J-H. & Chu, P.-S. Pattern classification of typhoon tracks using the fuzzy c-means clustering method. J. Clim. 24, 488–508 (2011).

    Article  Google Scholar 

  25. 25

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

    Article  Google Scholar 

  26. 26

    Johnson, N. How many ENSO flavors can we distinguish? J. Clim. 26, 4816–4827 (2013).

    Article  Google Scholar 

  27. 27

    Capotondi, A. et al. Understanding ENSO diversity. Bull. Am. Meteorol. Soc. (2014).

  28. 28

    Capotondi, A. ENSO diversity in the NCAR CCSM4 climate model. J. Geophys. Res. 118, 4755–4770 (2013).

    Article  Google Scholar 

  29. 29

    Cai, W. & Cowan, T. La Niña Modoki impacts Australia autumn rainfall variability. Geophys. Res. Lett. 36, L12805 (2009).

    Article  Google Scholar 

  30. 30

    Cai, W. et al. More frequent extreme La Niña events under greenhouse warming. Nature Clim. Change 5, 132–137 (2015).

    Article  Google Scholar 

  31. 31

    Eisenman, I., Yu, L. & Tziperman, E. Westerly wind bursts: ENSO's tail rather than the dog. J. Clim. 18, 5224–5238 (2005).

    Article  Google Scholar 

  32. 32

    Gebbie, G., Eisenman, I., Wittenberg, A. & Tziperman, E. Modulation of westerly wind bursts by sea surface temperature: A semistochastic feedback for ENSO. J. Atmos. Sci. 64, 3281–3295 (2007).

    Article  Google Scholar 

  33. 33

    McPhaden, M. J. Climate oscillations: Genesis and evolution of the 1997–98 El Niño. Science 283, 950–954 (1999).

    Article  Google Scholar 

  34. 34

    Picaut, J., Masia, F. & DuPenhoat, Y. An advective–reflective conceptual model for the oscillatory nature of the ENSO. Science 277, 663–66 (1997).

    Article  Google Scholar 

  35. 35

    Lian, T., Chen, D., Tang, Y. & Wu, Q. Effects of westerly wind bursts on El Niño: A new perspective. Geophys. Res. Lett. 41, 3522–3527 (2014).

    Article  Google Scholar 

  36. 36

    Hu, S., Fedorov, A. V., Lengaigne, M. & Guilyardi, E. The impact of westerly wind bursts on the diversity and predictability of El Niño events: An ocean energetics perspective. Geophys. Res. Lett. 41, 4654–4663 (2014).

    Article  Google Scholar 

  37. 37

    Ramesh, N. & Murtugudde, R. All flavours of El Niño have similar early subsurface origins. Nature Clim. Change 3, 42–46 (2013).

    Article  Google Scholar 

  38. 38

    Monahan, A. H. A simple model for the skewness of global sea surface winds. J. Atmos. Sci. 61, 2037–2049 (2004).

    Article  Google Scholar 

  39. 39

    Tippett, M. K., Barnston, A. G. & Li, S. Performance of recent multimodel ENSO forecasts. J. Appl. Meteor. Climatol. 51, 637–654 (2012).

    Article  Google Scholar 

  40. 40

    Wang, W., Chen, M. & Kumar, A. An assessment of the CFS real-time seasonal forecasts. Weath. Forecast 25, 950–969 (2010).

    Article  Google Scholar 

  41. 41

    Real-time ENSO Forecasts (International Research Institute for Climate and Society);

  42. 42

    Lee, T. & McPhaden, M. J. Increasing intensity of El Niño in the central equatorial Pacific. Geophys. Res. Lett. 37, L14603 (2010).

    Google Scholar 

  43. 43

    Chen, D., Cane, M. A. & Zebiak, S. E. The impact of NSCAT winds on predicting the 1997/98 El Niño: A case study with the Lamont–Doherty Earth Observatory model. J. Geophys. Res. 104, 11321–11327 (1999).

    Article  Google Scholar 

  44. 44

    Chen, D. et al. The sensitivity of the tropical Pacific Ocean simulation to the spatial and temporal resolution of wind forcing. J. Geophys. Res. 104, 11261–11271 (1999).

    Article  Google Scholar 

  45. 45

    Bellenger H., Guilyardi, E., Leloup, J., Lengaigne, M. & Vialard, J. ENSO representation in climate models: From CMIP3 to CMIP5. Clim. Dyn. 42, 1999–2018 (2013).

    Article  Google Scholar 

  46. 46

    Harrison, D. E. & Vecchi, G. A. Westerly wind events in the tropical Pacific, 1986–95. J. Clim. 10, 3131–3156 (1997).

    Article  Google Scholar 

  47. 47

    Gill, A. E. Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 106, 447–462 (1980).

    Article  Google Scholar 

  48. 48

    Chang, P. et al. Pacific meridional mode and El Niño–Southern Oscillation. Geophys. Res. Lett. 34, L16608 (2007).

    Article  Google Scholar 

  49. 49

    Zhang, H., Clement, A. & Di Nezio, P. The South Pacific Meridional Mode: A mechanism for ENSO-like variability. J. Clim. 27, 769–783 (2014).

    Article  Google Scholar 

  50. 50

    Chiodi, A. & Harrison, D. Equatorial Pacific easterly wind surges and the onset of La Nina events. J. Clim. (2015).

Download references


This work is supported by grants from the National Basic Research Program (2013CB430302), the National Natural Science Foundation of China (91128204, 41321004), the IPOVAR Project, and the Public Ocean Science and Technology Research Funds (201,105,018). We thank the TAO Project Office of the Pacific Marine Environmental Laboratory (PMEL) for providing the TAO/TRITON data and visualization service. M.A.C. also acknowledges the support of the Office of Naval Research under the research grant of MURI (N00014-12-1-0911).

Author information




D.C. conceived the work and wrote the paper. T.L. carried out data analyses and model experiments. C.F., M.A.C., Y.T., R.M., X.S., Q.W. and L.Z. contributed to the interpretation of the analysis and model results, and to the improvement of the manuscript.

Corresponding author

Correspondence to Dake Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Lian, T., Fu, C. et al. Strong influence of westerly wind bursts on El Niño diversity. Nature Geosci 8, 339–345 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing