Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Continental crust generated in oceanic arcs


Thin oceanic crust is formed by decompression melting of the upper mantle at mid-ocean ridges, but the origin of the thick and buoyant continental crust is enigmatic. Juvenile continental crust may form from magmas erupted above intra-oceanic subduction zones, where oceanic lithosphere subducts beneath other oceanic lithosphere. However, it is unclear why the subduction of dominantly basaltic oceanic crust would result in the formation of andesitic continental crust at the surface. Here we use geochemical and geophysical data to reconstruct the evolution of the Central American land bridge, which formed above an intra-oceanic subduction system over the past 70 Myr. We find that the geochemical signature of erupted lavas evolved from basaltic to andesitic about 10 Myr ago—coincident with the onset of subduction of more oceanic crust that originally formed above the Galápagos mantle plume. We also find that seismic P-waves travel through the crust at velocities intermediate between those typically observed for oceanic and continental crust. We develop a continentality index to quantitatively correlate geochemical composition with the average P-wave velocity of arc crust globally. We conclude that although the formation and evolution of continents may involve many processes, melting enriched oceanic crust within a subduction zone—a process probably more common in the Archaean—can produce juvenile continental crust.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Geochemical evolution in the CALB over the past 70 Myr.
Figure 2: Evolution from basaltic to andesitic compositions in the CALB in the past 10 Myr.
Figure 3: Seismic signature of Costa Rica from active source experiments.
Figure 4: Average compositions of intra-oceanic arcs.
Figure 5: Integrated continental index results.


  1. 1

    Taylor, S. R. & McLennan, S. M. The geochemical evolution of the continental crust. Rev. Geophys. 33, 241–265 (1995).

    Article  Google Scholar 

  2. 2

    Rudnick, R. L. & Gao, S. The composition of the continental crust. Treatise Geochem. 3, 1–64 (2003).

    Google Scholar 

  3. 3

    Korenaga, J., Kelemen, P. B. & Holbrook, S. W. Methods for resolving the origin of large igneous provinces from crustal seismology. J. Geophys. Res. 107(B9), 2178 (2002).

    Google Scholar 

  4. 4

    Kelemen, P. B. Genesis of high Mg# andesites and the continental crust. Contrib. Mineral. Petrol. 120, 1–19 (1995).

    Article  Google Scholar 

  5. 5

    Rudnick, R. L. Making continental crust. Nature 378, 571–578 (1995).

    Article  Google Scholar 

  6. 6

    Kelemen, P. B., Yogodzinski, G. M. & Scholl, D. W. in Inside the Subduction Factory (ed Eiler, J.) 223–276 (American Geophysical Union, 2004).

    Google Scholar 

  7. 7

    Martin, H. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos 46, 411–429 (1999).

    Article  Google Scholar 

  8. 8

    Hoernle, K. et al. Arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. Nature 451, 1094–1097 (2008).

    Article  Google Scholar 

  9. 9

    Gazel, E. et al. Galápagos-OIB signature in southern Central America: Mantle refertilization by arc–hot spot interaction. Geochem. Geophys. Geosyst. 10, Q02S11 (2009).

    Article  Google Scholar 

  10. 10

    Defant, M. J. & Drummond, M. B. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 387, 662–665 (1990).

    Article  Google Scholar 

  11. 11

    Gazel, E. et al. Plume–subduction interaction in southern Central America: Mantle upwelling and slab melting. Lithos 121, 117–134 (2011).

    Article  Google Scholar 

  12. 12

    Vogel, T. et al. Origin of silicic magmas along the Central American volcanic front: Genetic relationship to mafic melts. J. Volcanol. Geotherm. Res. 156, 217–228 (2006).

    Article  Google Scholar 

  13. 13

    Hayes, J. L. et al. Crustal structure across the Costa Rican Volcanic Arc. Geochem. Geophys. Geosyst. 14, 1087–1103 (2013).

    Article  Google Scholar 

  14. 14

    Christensen, N. I. & Mooney, W. D. Seismic velocity structure and composition of the continental crust: A global view. J. Geophys. Res. 1000, 9761–9788 (1995).

    Article  Google Scholar 

  15. 15

    MacKenzie, L. et al. Crustal structure along the southern Central American volcanic front. Geochem. Geophys. Geosyst. 9, Q08S09 (2008).

    Article  Google Scholar 

  16. 16

    Calvert, A. J. in Arc-Continent Collision (eds Brown, D. & Ryan, P. D.) 87–119 (Springer, 2011).

    Book  Google Scholar 

  17. 17

    Behn, M. D. & Kelemen, P. B. Stability of arc lower crust: Insights from the Talkeetna arc section, south central Alaska, and the seismic structure of modern arcs. J. Geophys. Res. 111, B11207 (2006).

    Article  Google Scholar 

  18. 18

    Kay, R. W. & Kay, S. M. Crustal recycling and the Aleutian arc. Geochim. Cosmochim. Acta 52, 1351–1359 (1988).

    Article  Google Scholar 

  19. 19

    Kay, R. W. Aleutian magnesian andesites: Melts from subducted Pacific Ocean crust. J. Volcanol. Geotherm. Res. 4, 117–132 (1978).

    Article  Google Scholar 

  20. 20

    Yogodzinski, G. M., Kay, R. W., Volynets, O. N., Kolosov, V. & Kay, S. M. Magnesian andesite in the western Aleutian Komandorsky region: Implications for slab melting and processes in the mantle wedge. Geol. Soc. Am. Bull. 107, 505–519 (1995).

    Article  Google Scholar 

  21. 21

    Rapp, R. P., Shimizu, N., Norman, M. D. & Applegate, G. S. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chem. Geol. 160, 335–356 (1999).

    Article  Google Scholar 

  22. 22

    Staudigel, H., Koppers, A. A. P., Plank, T. & Hanan, B. B. Seamounts in the subduction factory. Oceanography 23, 176–181 (2010).

    Article  Google Scholar 

  23. 23

    White, W. M. & Dupre, B. Sediment subduction and magma genesis in the Lesser Antilles: Isotopic and trace element constraints. J. Geophys. Res. 91, 5927–5941 (1986).

    Article  Google Scholar 

  24. 24

    Miller, D. M., Goldstein, S. L. & Langmuir, C. H. Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature 368, 514–520 (1994).

    Article  Google Scholar 

  25. 25

    Raos, M. A. & Crawford, A. J. Basalts from the Efate Island Group, central section of the Vanuatu arc, SW Pacific: Geochemistry and petrogenesis. J. Volcanol. Geotherm. Res. 134, 35–56 (2004).

    Article  Google Scholar 

  26. 26

    Elliot, T., Plank, T., Zindler, A., White, W. & Bourdon, B. Element transport from slab to volcanic front at the Marinas Arc. J. Geophys. Res. 102, 14991–15019 (1997).

    Article  Google Scholar 

  27. 27

    Condie, K. C. High field strength element ratios in Archean basalts: A window to evolving sources of mantle plumes? Lithos 79, 491–504 (2005).

    Article  Google Scholar 

  28. 28

    Martin, H. et al. Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos 198–199, 1–13 (2014).

    Article  Google Scholar 

  29. 29

    Bryant, J. A., Yogodzinski, G. M., Hall, M. L., Lewicki, J. L. & Bailey, D. G. Geochemical constraints on the origin of volcanic rocks from the Andean Northern Volcanic Zone, Ecuador. J. Petrol. 47, 1147–1175 (2006).

    Article  Google Scholar 

  30. 30

    Takahashi, N. et al. Structural variations of arc crusts and rifted margins in the southern Izu-Ogasawara arc-back arc system. Geochem. Geophys. Geosyst. 10, Q09X08 (2009).

    Article  Google Scholar 

  31. 31

    Albarede, F. Growth of continental crust. Tectonophysics 296, 1–14 (1998).

    Article  Google Scholar 

  32. 32

    Korenaga, J. Thermal evolution with a hydrating mantle and the initiation of plate tectonics in the early Earth. J. Geophys. Res. 116, B12403 (2011).

    Article  Google Scholar 

  33. 33

    Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    Article  Google Scholar 

  34. 34

    Kelemen, P. B., Hart, S. R. & Bernstein, S. Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet. Sci. Lett. 164, 387–406 (1998).

    Article  Google Scholar 

  35. 35

    Werner, R., Hoernle, K., Hauff, F. & Barckhausen, U. Geodynamic evolution of the Galápagos hot spot system (Central East Pacific) over the past 20 m.y.: Constraints from morphology, geochemistry, and magnetic anomalies. Geochem. Geophys. Geosyst. 4, 1108 (2003).

    Google Scholar 

  36. 36

    Plank, T. & Langmuir, C. H. Tracing trace elements form sediment input to volcanic output at subduction zones. Nature 362, 739–741 (1993).

    Article  Google Scholar 

  37. 37

    Hacker, B. R., Kelemen, P. B. & Behn, M. D. Differentiation of the continental crust by relamination. Earth Planet. Sci. Lett. 307, 501–516 (2011).

    Article  Google Scholar 

  38. 38

    Hoernle, K. et al. Missing history (16–71 Ma) of the Galápagos hotspot: Implications for the tectonic and biological evolution of the Americas. Geology 30, 795–798 (2002).

    Article  Google Scholar 

  39. 39

    Montes, C. et al. Evidence for Middle Eocene and younger land emergence in central Panama: Implications for isthmus closure. Geol. Soc. Am. Bull. 124, 780–799 (2012).

    Article  Google Scholar 

  40. 40

    Coates, A. G., Collins, L. S., Aubry, M-P. & Berggren, W. A. The Geology of the Darien, Panama, and the Late Miocene–Pliocene collision of the Panama arc with northwestern South America. Geol. Soc. Am. Bull. 116, 1327–1344 (2004).

    Article  Google Scholar 

  41. 41

    Marshall, L. G. Land mammals and the great American interchange. Am. Sci. 76, 380–388 (1988).

    Google Scholar 

  42. 42

    Lucas, S. & Alvarado, G. E. The role of Central America in land-vertebrate dispersal during the Late Cretaceous and Cenozoic. Profil 7, 401–411 (1994).

    Google Scholar 

  43. 43

    Collins, L. S., Budd, A. F. & Coates, A. G. Earliest evolution associated with closure of the Tropical American Seaway. Proc. Natl Acad. Sci. USA 93, 6069–6072 (1996).

    Article  Google Scholar 

  44. 44

    Wegner, W., Worner, G., Harmon, R. S. & Jicha, B. R. Magmatic history and evolution of the Central American Land Bridge in Panama since Cretaceous times. Geol. Soc. Am. Bull. 123, 703–724 (2011).

    Article  Google Scholar 

Download references


This project was supported by NSF awards EAR-1221414 and EAR-1201903 to E.G., NSF award OCE-0405654 to W.S.H. and NSF EAR-0742368 to P.K. and by German Science Foundation (DFG) awards HO1833/6 and SFB574, C2 (Contribution Nr. 275) to K.H., P.v.d.B. and F.H. This paper benefited from intellectual discussions with T. Plank, J. Gill and K. Condie. Reviews and comments by N. Sou, J. Trela, R. Rudnick and B. Jicha improved the original manuscript.

Author information




E.G. planned the project, compiled and modelled the geochemical data and derived the continental index. E.G., J.L.H., W.S.H., K.H., E.A.V. and P.K. contributed to writing the paper and developing the ideas. J.L.H, E.E. and W.S.H. conducted the active seismic experiment in Costa Rica and modelled the geophysical data. K.H., E.G., F.H. and P.v.d.B. carried out field studies and generated geochemical data from the CALB. E.G., E.A.V. and S.C. developed the statistical codes and conducted data analysis. P.K., M.J.C., A.J.C. and G.M.Y. collaborated in the project with data and data analysis.

Corresponding author

Correspondence to Esteban Gazel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1675 kb)

Supplementary Information

Supplementary Information (XLS 65 kb)

Supplementary Information

Supplementary Information (XLS 2729 kb)

Supplementary Information

Supplementary Information (XLSX 222 kb)

Supplementary Information

Supplementary Information (XLSX 172 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gazel, E., Hayes, J., Hoernle, K. et al. Continental crust generated in oceanic arcs. Nature Geosci 8, 321–327 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing