Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments

Article metrics


The depth of oxygen penetration into marine sediments differs considerably from one region to another1,2. In areas with high rates of microbial respiration, O2 penetrates only millimetres to centimetres into the sediments3, but active anaerobic microbial communities are present in sediments hundreds of metres or more below the sea floor4,5,6,7. In areas with low sedimentary respiration, O2 penetrates much deeper8,9,10,11,12 but the depth to which microbial communities persist was previously unknown9,10,13. The sediments underlying the South Pacific Gyre exhibit extremely low areal rates of respiration9. Here we show that, in this region, microbial cells and aerobic respiration persist through the entire sediment sequence to depths of at least 75 metres below sea floor. Based on the Redfield stoichiometry of dissolved O2 and nitrate, we suggest that net aerobic respiration in these sediments is coupled to oxidation of marine organic matter. We identify a relationship of O2 penetration depth to sedimentation rate and sediment thickness. Extrapolating this relationship, we suggest that oxygen and aerobic communities may occur throughout the entire sediment sequence in 15–44% of the Pacific and 9–37% of the global sea floor. Subduction of the sediment and basalt from these regions is a source of oxidized material to the mantle.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: IODP Expedition 329 site locations.
Figure 2: Sedimentary profiles of cell abundance and chemical concentrations11.
Figure 3: Net O2 reaction rates in sediment at SPG sites.
Figure 4: Regions where dissolved O2 and aerobic activity may occur throughout the sediment.


  1. 1

    Emerson, S., Fischer, K., Reimers, C. & Heggie, D. Organic carbon dynamics and preservation in deep-sea sediments. Deep-Sea Res. 32, 1–21 (1985).

  2. 2

    Jahnke, R. A., Heggie, D., Emerson, S. & Grundmanis, V. Pore waters of the central Pacific Ocean: Nutrient results. Earth Planet. Sci. Lett. 61, 233–256 (1982).

  3. 3

    Revsbech, N. P., Jørgensen, B. B. & Blackburn, T. H. Oxygen in the sea bottom measured with a microelectrode. Science 207, 1355–1356 (1980).

  4. 4

    Parkes, R. J. et al. Deep bacterial biosphere in Pacific Ocean sediments. Nature 371, 410–413 (1994).

  5. 5

    D’Hondt, S. et al. Distributions of microbial activities in deep subseafloor sediments. Science 306, 2216–2221 (2004).

  6. 6

    Inagaki, F. et al. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc. Natl Acad. Sci. USA 103, 2815–2820 (2006).

  7. 7

    Lomstein, B. A., Langerhuus, A. T., D’Hondt, S., Jørgensen, B. B. & Spivack, A. J. Spore abundance, microbial growth and necromass turnover in deep subseafloor sediment. Nature 484, 101–104 (2012).

  8. 8

    Murray, J. W. & Grundmanis, V. Oxygen consumption in pelagic marine sediments. Science 209, 1527–1530 (1980).

  9. 9

    D’Hondt, S. et al. Subseafloor sedimentary life in the South Pacific Gyre. Proc. Natl Acad. Sci. USA 106, 11651–11656 (2009).

  10. 10

    Røy, H. et al. Aerobic microbial respiration in 86-million-year-old deep-sea red clay. Science 336, 922–925 (2012).

  11. 11

    D’Hondt, S., Inagaki, F. & Alvarez Zarikian, C. A. Proc. IODP 329 (Integrated Ocean Drilling Program Management International, 2011).

  12. 12

    Orcutt, B. N. et al. Oxygen consumption rates in subseafloor basaltic crust derived from a reaction transport model. Nature Commun. 4, 2539 (2013).

  13. 13

    Morita, R. Y. & Zobell, C. E. Occurrence of bacteria collected during the Mid-Pacific Expedition. Deep-Sea Res. 3, 66–73 (1955).

  14. 14

    Jahnke, R. A. The global ocean flux of particulate organic carbon: Areal distribution and magnitude. Glob. Biogeochem. Cycles 10, 71–88 (1996).

  15. 15

    Kallmeyer, J., Pockalny, R., Adhikari, R., Smith, D. C. & D’Hondt, S. Global distribution of subseafloor sedimentary biomass. Proc. Natl Acad. Sci. USA 109, 16213–16216 (2012).

  16. 16

    Hedges, J. I. et al. Sedimentary organic matter preservation: A test for selective degradation under oxic conditions. Am. J. Sci. 299, 529–555 (1999).

  17. 17

    Hensen, C. & Zabel, M. in Marine Geochemistry (eds Schulz, H. D. & Zabel, M.) 209–231 (Springer, 2000).

  18. 18

    Anderson, L. A. & Sarmiento, J. L. Global ocean phosphate and oxygen simulations. Glob. Biogeochem. Cycles 9, 621–636 (1995).

  19. 19

    Gieskes, J. M. & Boulegue, J. Interstitial water studies, Leg-92. Init. Rep. Deep Sea Drill. Proj. 92, 423–429 (1986).

  20. 20

    Blair, C. C., D’Hondt, S., Spivack, A. J. & Kingsley, R. H. Potential of radiolytic hydrogen for microbial respiration in subseafloor sediments. Astrobiology 7, 951–970 (2007).

  21. 21

    D’ Hondt, S., Rutherford, S. & Spivack, A. J. Metabolic activity of subsurface life in deep-sea sediments. Science 295, 2067–2070 (2002).

  22. 22

    Middelburg, J. J. A simple rate model for organic matter decomposition in marine sediments. Geochim. Cosmochim. Acta 53, 1577–1581 (1989).

  23. 23

    Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 17, 549–560 (1905); Cowper A. D. Investigations on the theory of Brownian movement (Dover Publications, 1926) (English transl.);

  24. 24

    Heath, G. R., Moore, T. C. Jr & Dauphin, J. P. in The Fate of Fossil Fuel CO2 in the Oceans (eds Andersen, N. R. & Malahoff, A.) 605–625 (Plenum Press, 1977).

  25. 25

    Evans, K. A. The redox budget of subduction zones. Earth Sci. Rev. 113, 11–32 (2012).

  26. 26

    Kelley, K. A. & Cottrell, E. Water and the oxidation state of subduction zone magmas. Science 325, 605–607 (2009).

  27. 27

    Sleep, N. H., Bird, D. K. & Pope, E. C. Paleontology of Earth’s Mantle. Annu. Rev. Earth Planet. Sci. 40, 277–300 (2012).

  28. 28

    Wang, G., Spivack, A. J., Rutherford, S., Manor, U. & D’Hondt, S. Quantification of co-occurring reaction rates in deep subseafloor sediments. Geochim. Cosmochim. Acta 72, 3479–3488 (2008).

  29. 29

    Laske, G. & Masters, G. A. A global digital map of sediment thickness. EOS Trans. AGU 78, F483 (1997).

  30. 30

    Divins, D. L. NGDC Total Sediment Thickness of the World’s Oceans and Marginal Seas (NOAA, 2008).

Download references


This research would not have been possible without the dedicated effort of the drilling crew, ship’s crew and scientific staff of the Drillship JOIDES Resolution. We thank the shipboard scientific party, coring crew and ship’s crew of piston-coring expedition KN223 for dedicated effort that allowed us to test our global O2 model in the North Atlantic. We thank V. M. Fulfer and M. J. Hayden for assistance with data compilation. The project was undertaken as part of Integrated Ocean Drilling Program (IODP) Expedition 329. The expedition was funded by the US National Science Foundation (NSF); the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT); the European Consortium for Ocean Research Drilling; the Ministry of Science and Technology (People’s Republic of China); the Korea Institute of Geoscience and Mineral Resources; the Australian Research Council and the New Zealand Institute for Geological and Nuclear Sciences; and the Ministry of Earth Sciences (India). Post-expedition analyses were funded by the NSF Division of Ocean Sciences (grant 0939564 to S.D’H. and grant 1130735 to S.D’H. and A.J.S.), the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Science Research (no. 26251041, 24651018, 24687004, and GR102 in the NEXT Program: to F.I. and Y.M.) through the MEXT, and the Deutsche Forschungsgemeinschaft (grant to J.Kallmeyer). Expedition KN223 was funded by the NSF Division of Ocean Sciences (grant 1433150 to A.J.S., S.D’H. and R.P.). This is a contribution to the Deep Carbon Observatory (DCO). It is Center for Dark Energy Biosphere Investigations (C-DEBI) publication 254.

Author information

S.D’H. and F.I. led IODP Expedition 329. C.A.Z. managed the Expedition 329 project. S.D’H., F.I., T.F., R.P. and A.J.S. designed the study. L.J.A., N.D., T.E., H.E., T.F., B.G., R.N.H., B.W.H., J-H.H., J.Kallmeyer, J.Kim, J.E.L., C.C.M., S.M., Y.M., R.W.M., R.P., J.S., T.S., F.S., C.E.S-D., D.C.S., A.J.S., B.O.S., Y.S., M.S., L.T., G.U., Y.T.Y., G-I.Z., X-H.Z. and W.Z. collected and analysed samples and data. S.D’H. wrote the manuscript with significant input from F.I., T.F., J.Kallmeyer, R.W.M., Y.M., R.P., J.S. and A.J.S.

Correspondence to Steven D’Hondt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2322 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

D’Hondt, S., Inagaki, F., Zarikian, C. et al. Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments. Nature Geosci 8, 299–304 (2015) doi:10.1038/ngeo2387

Download citation

Further reading