The remote impacts of climate feedbacks on regional climate predictability

Abstract

Uncertainty in the spatial pattern of climate change is dominated by divergent predictions among climate models. Model differences are closely linked to their representation of climate feedbacks, that is, the additional radiative fluxes that are caused by changes in clouds, water vapour, surface albedo, and other factors, in response to an external climate forcing. Progress in constraining this uncertainty is therefore predicated on understanding how patterns of individual climate feedbacks aggregate into a regional and global climate response. Here we present a simple, moist energy balance model that combines regional feedbacks and the diffusion of both latent and sensible heat. Our model emulates the relationship between regional feedbacks and temperature response in more comprehensive climate models; the model can therefore be used to understand how uncertainty in feedback patterns drives uncertainty in the patterns of temperature response. We find that whereas uncertainty in tropical feedbacks induces a global response, the impact of uncertainty in polar feedbacks remains predominantly regionally confined.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The relationship between feedback patterns and climate response in aquaplanet GCM simulations.
Figure 2: The climate response in the moist energy balance model for three different, stylized feedback patterns.
Figure 3: The impact of uncertainty in feedbacks patterns on uncertainty in temperature-response patterns in the moist energy balance model.

References

  1. 1

    Charney, J. G. et al. Carbon Dioxide and Climate: A Scientific Assessment 22 (National Academy of Sciences, 1979).

    Google Scholar 

  2. 2

    Hansen, J. E. et al. in Climate Processes and Climate Sensitivity (eds Hansen, J. E. & Takahashi, T.) 130–163 (American Geophysical Union, 1984).

    Google Scholar 

  3. 3

    Schlesinger, M. E. in The Potential Climatic Effects of Increasing Carbon Dioxide (eds MacCracken, M. & Luther, F.) 81–147 (US Dept. of Energy, 1985).

    Google Scholar 

  4. 4

    Meehl, G. A. et al. The WCRP CMIP3 multi-model dataset: A new era in climate change research. Bull. Am. Meteorol. Soc. 88, 1383–1394 (2007).

    Article  Google Scholar 

  5. 5

    Zelinka, M. A. & Hartmann, D. L. A diagnostic study of climate feedback processes in atmospheric general circulation models. J. Clim. 25, 608–624 (2012).

    Article  Google Scholar 

  6. 6

    Soden, B. J. & Vecchi, G. A. The vertical distribution of cloud feedback in coupled ocean–atmosphere models. Geophys. Res. Lett. 38, L12704 (2011)

    Article  Google Scholar 

  7. 7

    Bony, S. & Dufresne, J. L. Marine boundary layer clouds at the heart of cloud feedback uncertainties in climate models. Geophys. Res. Lett. 32, L20806 (2005).

    Article  Google Scholar 

  8. 8

    Feldl, N. & Roe, G. H. The nonlinear and nonlocal nature of climate feedbacks. J. Clim. 26, 8289–8304 (2013).

    Article  Google Scholar 

  9. 9

    Huang, Y. & Zhang, M. The implication of radiative forcing and feedback for meridional energy transport. Geophys. Res. Lett. 41, 1665–1672 (2014).

    Article  Google Scholar 

  10. 10

    Hwang, Y-T. & Frierson, D. M. W. Increasing atmospheric poleward energy transport with global warming. Geophys. Res. Lett. 37, L24807 (2010).

    Google Scholar 

  11. 11

    Flannery, B. P. Energy balance models incorporating transport of thermal and latent energy. J. Atmos. Sci. 41, 414–421 (1983).

    Article  Google Scholar 

  12. 12

    Rose, B. E. J. et al. The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett. 41, 1071–1078 (2014).

    Article  Google Scholar 

  13. 13

    Bony, S. et al. How well do we understand and evaluate climate change feedback processes? J. Clim. 19, 3445–3482 (2006).

    Article  Google Scholar 

  14. 14

    Soden, B. J. & Held, I. M. An assessment of climate feedbacks in coupled ocean atmosphere models. J. Clim. 19, 3354–3360 (2006).

    Article  Google Scholar 

  15. 15

    Roe, G. H. Feedbacks, time scales, and seeing red. Annu. Rev. Earth Planet. Sci. 37, 93–115 (2009).

    Article  Google Scholar 

  16. 16

    Roe, G. H. & Armour, K. C. How sensitive is climate sensitivity? Geophys. Res. Lett. 38, L14708 (2011)

    Article  Google Scholar 

  17. 17

    Feldl, N. & Roe, G. H. Four perspectives on climate feedbacks. Geophys. Res. Lett. 40, 4007–4011 (2013)

    Article  Google Scholar 

  18. 18

    Boer, G. J. & Yu, B. Climate sensitivity and climate state. Clim. Dynam. 21, 167–176 (2003).

    Article  Google Scholar 

  19. 19

    Crook, J. A., Forster, P. M. & Stuber, N. Spatial patterns of modeled climate feedback and contributions to temperature response and polar amplification. J. Clim. 24, 3575–3592 (2011).

    Article  Google Scholar 

  20. 20

    Armour, K. C., Bitz, C. M. & Roe, G. H. Time-varying climate sensitivity from regional feedbacks. J. Clim. 26, 4518–4534 (2013).

    Article  Google Scholar 

  21. 21

    Mauritsen, T. et al. Climate feedback efficiency and synergy. Clim. Dynam. 41, 2539–2554 (2013).

    Article  Google Scholar 

  22. 22

    Graversen, R. G. & Wang, M. Polar amplification in a coupled climate model with locked albedo. Clim. Dynam. 33, 629–643 (2009).

    Article  Google Scholar 

  23. 23

    Roe, G. H. & Baker, M. B. Why is climate sensitivity so unpredictable? Science 318, 629–632 (2007).

    Article  Google Scholar 

  24. 24

    Frierson, D. M. W., Held, I. M. & Zurita-Gotor, P. A gray-radiation aquaplanet moist GCM. part II: Energy transports in altered climates. J. Atmos. Sci. 64, 1680–1693 (2007).

    Article  Google Scholar 

  25. 25

    Vallis, G. K. Atmospheric and Oceanic Fluid Dynamics (Cambridge Univ. Press, 2006).

    Google Scholar 

  26. 26

    Kidston, J., Dean, S. M., Renwick, J. A. & Vallis, G. K. A robust increase in the eddy length scale in the simulation of future climates. Geophys. Res. Lett. 37, L03806 (2010).

    Google Scholar 

  27. 27

    O’Gorman, P. A. Understanding the varied response of the extratropical storm tracks to climate change. Proc. Natl Acad. Sci. USA 107, 19176–19180 (2010).

    Article  Google Scholar 

  28. 28

    North, G. R., Cahalan, R. F. & Coakley, J. K. Jr Energy balance climate models. Rev. Geophys. 19, 91–121 (1981).

    Article  Google Scholar 

  29. 29

    Hwang, Y-T., Frierson, D. M. W. & Kay, J. E. Coupling between Arctic feedbacks and changes in poleward energy transport. Geophys. Res. Lett. 38, L17704 (2011).

    Google Scholar 

  30. 30

    Frierson, D. M. W. & Hwang, Y-T. Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Clim. 25, 720–733 (2012).

    Article  Google Scholar 

  31. 31

    Chiang, J. C. H. & Bitz, C. M. Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Clim. Dynam. 25, 477–496 (2005).

    Article  Google Scholar 

  32. 32

    Pausata, F., Battisti, D. S., Nisancioglu, K. N. & Bitz, C. M. Chinese stalagmites: Proxies for the Indian monsoon response to an archetypal Heinrich event. Nature Geosci. 4, 474–480 (2011).

    Article  Google Scholar 

  33. 33

    Deser, C., Phillips, A. S., Bourdette, V. & Teng, H. Uncertainty in climate change projections: The role of internal variability. Clim. Dynam. 38, 527–546 (2012).

    Article  Google Scholar 

  34. 34

    Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1107 (2009).

    Article  Google Scholar 

  35. 35

    Caballero, R. & Hanley, J. Midlatitude eddies, storm-track diffusivity and poleward moisture transport in warm climates. J. Atmos. Sci. 69, 3237–3250 (2012).

    Article  Google Scholar 

  36. 36

    Caballero, R. & Huber, M. State-dependent climate sensitivity in past warm climates and its implications for future climate projections. Proc. Natl Acad. Sci. USA 110, 14162–14167 (2013).

    Article  Google Scholar 

  37. 37

    Wu, Y. et al. Changes in storm tracks and energy transports in a warmer climate simulated by the GFDL CM2.1 model. Clim. Dynam. 37, 53–72 (2011).

    Article  Google Scholar 

  38. 38

    Holland, M. M. & Bitz, C. M. Polar amplification of climate change in the coupled model intercomparison project. Clim. Dynam. 21, 221–232 (2003).

    Article  Google Scholar 

  39. 39

    Webb, M. J., Lambert, F. H. & Gregory, J. M. Origins of differences in climate sensitivity, forcing and feedback in climate models. Clim. Dynam. 40, 677–707 (2013).

    Article  Google Scholar 

  40. 40

    Feldl, N., Frierson, D. M. W. & Roe, G. H. The influence of regional feedbacks on circulation sensitivity. Geophys. Res. Lett. 41, 2212–2220 (2014).

    Article  Google Scholar 

  41. 41

    Held, I. M. & Soden, B. J. Water vapor feedback and global warming. Annu. Rev. Energy Environ. 25, 441–475 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for enlightening feedback from M. Baker, A. Donohoe and P. Molnar.

Author information

Affiliations

Authors

Contributions

G.H.R. performed the MEBM analyses and N.F. performed the AM2 integrations. All authors contributed to the interpretation of the results and to writing the manuscript.

Corresponding author

Correspondence to Gerard H. Roe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 279 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roe, G., Feldl, N., Armour, K. et al. The remote impacts of climate feedbacks on regional climate predictability. Nature Geosci 8, 135–139 (2015). https://doi.org/10.1038/ngeo2346

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing