Witwatersrand gold deposits formed by volcanic rain, anoxic rivers and Archaean life


The Witwatersrand Basin in South Africa is one of the best-preserved records of fluvial sedimentation on an Archaean continent1. The basin hosts the worlds biggest gold resource in thin pebble beds, but the process for gold enrichment is debated2,3,4,5. Mechanical accumulation of gold particles from flowing river water is the prevailing hypothesis2,6, yet there is evidence for hydrothermal mobilization of gold by fluids invading the metasedimentary rocks after their burial3,4,7. Earth’s atmosphere three billion years ago was oxygen free8, but already sustained some of the oldest microbial life on land9. Here I use thermodynamic modelling and mass-balance calculations to show that these conditions could have led to the chemical transport and precipitation of gold in anoxic surface waters, reconciling the evidence for fluvial deposition with evidence for hydrothermal-like chemical reactions. I suggest that the release of sulphurous gases from large volcanic eruptions created acid rain that enabled the dissolution and transport of gold in surface waters as sulphur complexes. Precipitation of the richest gold deposits could have been triggered by chemical reduction of the dissolved gold onto organic material in shallow lakes and pools. I conclude that the Witwatersrand gold could have formed only during the Archaean, after the emergence of continental life but before the rise of oxygen in the Earth’s atmosphere.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Rock slab of Carbon Leader Reef, with black carbon containing bonanza-grade gold as microscopic inclusions.
Figure 2: Gold solubility in Archaean surface water as a function of redox conditions and acidity.
Figure 3: Process cycle for the formation of giant carbon-leader gold reefs in the Witwatersrand basin.


  1. 1

    Frimmel, H. E. Archaean atmospheric evolution: Evidence from the Witwatersrand gold fields, South Africa. Earth Sci. Rev. 70, 1–46 (2005).

  2. 2

    Frimmel, H. E. et al. in Economic Geology 100th Anniversary Volume (eds Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J. & Richards, J. P.) 769–797 (Society of Economic Geologists, 2005).

  3. 3

    Barnicoat, A. C. et al. Hydrothermal gold mineralization in the Witwatersrand basin. Nature 386, 820–824 (1997).

  4. 4

    Law, J. D. M. & Phillips, G. N. in Economic Geology 100th Anniversary Volume (eds Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J. & Richards, J. P.) 799–811 (Society of Economic Geologists, 2005).

  5. 5

    Horscroft, F. D. M., Mossman, D. J., Reimer, T. O. & Hennigh, Q. Witwatersrand metallogenesis: The case for (modified) syngenesis. Soc. Sediment. Geol. Spec. Publ. 11, 75–95 (2012).

  6. 6

    Kirk, J., Ruiz, J., Chesley, J., Walshe, J. & England, G. A major Archean, gold- and crust-forming event in the Kaapvaal Craton, South Africa. Science 297, 1856–1858 (2002).

  7. 7

    Phillips, G. N. & Powell, R. Origin of Witwatersrand gold: A metamorphic devolatilisation—hydrothermal replacement model. Appl. Earth Sci. (Trans. Inst. Min. Metall. B) 120, 112–129 (2012).

  8. 8

    England, G. L., Rasmussen, B., Krapez, B. & Groves, D. I. Palaeoenvironmental significance of rounded pyrite in siliciclastic sequences of the Late Archaean Witwatersrand Basin: Oxygen-deficient atmosphere or hydrothermal alteration? Sedimentology 49, 1133–1156 (2002).

  9. 9

    Mossman, D. et al. The indigenous origin of Witwatersrand “carbon”. Precambr. Res. 164, 173–186 (2008).

  10. 10

    Large, R. R. et al. Evidence for an intrabasinal source and multiple concentration processes in the formation of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa. Econ. Geol. 108, 1215–1241 (2013).

  11. 11

    Guy, B. M., Ono, S., Gutzmer, J., Lin, Y. & Beukes, N. J. Sulfur sources of sedimentary “buckshot” pyrite in the auriferous conglomerates of the Mesoarchean Witwatersrand and Ventersdorp Supergroups, Kaapvaal Craton, South Africa. Mineral. Deposita 49, 751–775 (2014).

  12. 12

    Meier, D. L., Heinrich, C. A. & Watts, M. A. Mafic dikes displacing Witwatersrand gold reefs: Evidence against metamorphic-hydrothermal ore formation. Geology 37, 607–610 (2009).

  13. 13

    Koglin, N., Zeh, A., Frimmel, H. E. & Gerdes, A. New constraints on the auriferous Witwatersrand sediment provenance from combined detrital zircon U–Pb and Lu–Hf isotope data for the Eldorado Reef (Central Rand Group, South Africa). Precambr. Res. 183, 817–824 (2010).

  14. 14

    Dixon, R. D. Geochemical evidence for multiple gold mineralisation events in the Witwatersrand Basin. V. M. Goldschmidt Conference, Florence. Mineral. Mag. http://dx.doi.org/10.1180/minmag.2013.077.5.4 (2013)

  15. 15

    Hofmann, A., Bekker, A., Rouxel, O., Rumble, D. & Master, S. Multiple sulphur and iron isotope composition of detrital pyrite in Archaean sedimentary rocks: A new tool for provenance analysis. Earth Planet. Sci. Lett. 286, 436–445 (2009).

  16. 16

    Ohmoto, H., Watanabe, Y., Ikemi, H., Poulson, S. R. & Taylor, B. E. Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442, 908–911 (2006).

  17. 17

    Holland, H. D. Why the atmosphere became oxygenated: A proposal. Geochim. Cosmochim. Acta 73, 5241–5255 (2009).

  18. 18

    Gaillard, F., Scaillet, B. & Arndt, N. T. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478, 229–232 (2011).

  19. 19

    Kump, L. R. & Barley, M. E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007).

  20. 20

    Rasmussen, B. & Buick, R. Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia. Geology 27, 115–118 (1999).

  21. 21

    Gumsley, A. P. et al. The Hlagothi Complex: The identification of fragments from a Mesoarchaean large igneous province on the Kaapvaal Craton. Lithos 174, 333–348 (2013).

  22. 22

    Self, S., Blake, S., Sharma, K., Widdowson, M. & Sephton, S. Sulfur and chlorine in Late Cretaceous Deccan magmas and eruptive gas release. Science 319, 1654–1657 (2008).

  23. 23

    Hedenquist, J. W. & Lowenstern, J. B. The role of magmas in the formation of hydrothermal ore deposits. Nature 370, 519–527 (1994).

  24. 24

    Phillips, G. N. & Law, J. D. M. Witwatersrand Gold Fields: Geology, Genesis, and Exploration Vol. 13, 439–500 (SEG Reviews, 2000).

  25. 25

    Renders, P. J. & Seward, T. M. The stability of hydrosulfido-complexes and sulfido-complexes of Au(I) and Ag(I) at 25 °C. Geochim. Cosmochim. Acta 53, 245–253 (1989).

  26. 26

    Tagirov, B. R., Baranova, N. N., Zotov, A. V., Schott, J. & Bannykh, L. N. Experimental determination of the stabilities of Au2S(cr) at 25 °C and Au(HS)2 at 25–250 °C. Geochim. Cosmochim. Acta 70, 3689–3701 (2006).

  27. 27

    Akinfiev, N. N. & Zotov, A. V. Thermodynamic description of aqueous species in the system Cu–Ag–Au–S–O–H at temperatures of 0–600 °C and pressures of 1–3000 bar. Geochem. Int. 48, 714–720 (2010).

  28. 28

    Simmons, S. F. & Brown, K. L. Gold in magmatic hydrothermal solutions and the rapid formation of a giant ore deposit. Science 314, 288–291 (2006).

  29. 29

    Hannah, J. L., Stein, H. J., Markey, R. J. & Scherstén, A. Gold: A Re–Os geochronometer? Geochim. Cosmochim. Acta 68, A773 (2004).

  30. 30

    Halevy, I. Production, preservation, and biological processing of mass-independent sulfur isotope fractionation in the Archean surface environment. Proc. Natl Acad. Sci. USA 110, 17644–17649 (2013).

Download references


I thank N. Arndt, T. Driesner, B. M. Eglington, I. Halevy, G. Hall, B. Lehmann, A. Pather, T. Schlegel, T. Wagner, V. Wall and P. Weis for inspiration and help with field observations, and for critical comments on this paper since its first presentation at the 2013 Goldschmidt conference. Supported by ETH Zurich and Swiss National Science Foundation grants 200020-146681 and 200021-146651.

Author information

Correspondence to Christoph A. Heinrich.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 390 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heinrich, C. Witwatersrand gold deposits formed by volcanic rain, anoxic rivers and Archaean life. Nature Geosci 8, 206–209 (2015). https://doi.org/10.1038/ngeo2344

Download citation

Further reading