Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Witwatersrand gold deposits formed by volcanic rain, anoxic rivers and Archaean life


The Witwatersrand Basin in South Africa is one of the best-preserved records of fluvial sedimentation on an Archaean continent1. The basin hosts the worlds biggest gold resource in thin pebble beds, but the process for gold enrichment is debated2,3,4,5. Mechanical accumulation of gold particles from flowing river water is the prevailing hypothesis2,6, yet there is evidence for hydrothermal mobilization of gold by fluids invading the metasedimentary rocks after their burial3,4,7. Earth’s atmosphere three billion years ago was oxygen free8, but already sustained some of the oldest microbial life on land9. Here I use thermodynamic modelling and mass-balance calculations to show that these conditions could have led to the chemical transport and precipitation of gold in anoxic surface waters, reconciling the evidence for fluvial deposition with evidence for hydrothermal-like chemical reactions. I suggest that the release of sulphurous gases from large volcanic eruptions created acid rain that enabled the dissolution and transport of gold in surface waters as sulphur complexes. Precipitation of the richest gold deposits could have been triggered by chemical reduction of the dissolved gold onto organic material in shallow lakes and pools. I conclude that the Witwatersrand gold could have formed only during the Archaean, after the emergence of continental life but before the rise of oxygen in the Earth’s atmosphere.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Rock slab of Carbon Leader Reef, with black carbon containing bonanza-grade gold as microscopic inclusions.
Figure 2: Gold solubility in Archaean surface water as a function of redox conditions and acidity.
Figure 3: Process cycle for the formation of giant carbon-leader gold reefs in the Witwatersrand basin.


  1. Frimmel, H. E. Archaean atmospheric evolution: Evidence from the Witwatersrand gold fields, South Africa. Earth Sci. Rev. 70, 1–46 (2005).

    Article  Google Scholar 

  2. Frimmel, H. E. et al. in Economic Geology 100th Anniversary Volume (eds Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J. & Richards, J. P.) 769–797 (Society of Economic Geologists, 2005).

    Google Scholar 

  3. Barnicoat, A. C. et al. Hydrothermal gold mineralization in the Witwatersrand basin. Nature 386, 820–824 (1997).

    Article  Google Scholar 

  4. Law, J. D. M. & Phillips, G. N. in Economic Geology 100th Anniversary Volume (eds Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J. & Richards, J. P.) 799–811 (Society of Economic Geologists, 2005).

    Google Scholar 

  5. Horscroft, F. D. M., Mossman, D. J., Reimer, T. O. & Hennigh, Q. Witwatersrand metallogenesis: The case for (modified) syngenesis. Soc. Sediment. Geol. Spec. Publ. 11, 75–95 (2012).

    Google Scholar 

  6. Kirk, J., Ruiz, J., Chesley, J., Walshe, J. & England, G. A major Archean, gold- and crust-forming event in the Kaapvaal Craton, South Africa. Science 297, 1856–1858 (2002).

    Article  Google Scholar 

  7. Phillips, G. N. & Powell, R. Origin of Witwatersrand gold: A metamorphic devolatilisation—hydrothermal replacement model. Appl. Earth Sci. (Trans. Inst. Min. Metall. B) 120, 112–129 (2012).

    Article  Google Scholar 

  8. England, G. L., Rasmussen, B., Krapez, B. & Groves, D. I. Palaeoenvironmental significance of rounded pyrite in siliciclastic sequences of the Late Archaean Witwatersrand Basin: Oxygen-deficient atmosphere or hydrothermal alteration? Sedimentology 49, 1133–1156 (2002).

    Article  Google Scholar 

  9. Mossman, D. et al. The indigenous origin of Witwatersrand “carbon”. Precambr. Res. 164, 173–186 (2008).

    Article  Google Scholar 

  10. Large, R. R. et al. Evidence for an intrabasinal source and multiple concentration processes in the formation of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa. Econ. Geol. 108, 1215–1241 (2013).

    Article  Google Scholar 

  11. Guy, B. M., Ono, S., Gutzmer, J., Lin, Y. & Beukes, N. J. Sulfur sources of sedimentary “buckshot” pyrite in the auriferous conglomerates of the Mesoarchean Witwatersrand and Ventersdorp Supergroups, Kaapvaal Craton, South Africa. Mineral. Deposita 49, 751–775 (2014).

    Article  Google Scholar 

  12. Meier, D. L., Heinrich, C. A. & Watts, M. A. Mafic dikes displacing Witwatersrand gold reefs: Evidence against metamorphic-hydrothermal ore formation. Geology 37, 607–610 (2009).

    Article  Google Scholar 

  13. Koglin, N., Zeh, A., Frimmel, H. E. & Gerdes, A. New constraints on the auriferous Witwatersrand sediment provenance from combined detrital zircon U–Pb and Lu–Hf isotope data for the Eldorado Reef (Central Rand Group, South Africa). Precambr. Res. 183, 817–824 (2010).

    Article  Google Scholar 

  14. Dixon, R. D. Geochemical evidence for multiple gold mineralisation events in the Witwatersrand Basin. V. M. Goldschmidt Conference, Florence. Mineral. Mag. (2013)

  15. Hofmann, A., Bekker, A., Rouxel, O., Rumble, D. & Master, S. Multiple sulphur and iron isotope composition of detrital pyrite in Archaean sedimentary rocks: A new tool for provenance analysis. Earth Planet. Sci. Lett. 286, 436–445 (2009).

    Article  Google Scholar 

  16. Ohmoto, H., Watanabe, Y., Ikemi, H., Poulson, S. R. & Taylor, B. E. Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442, 908–911 (2006).

    Article  Google Scholar 

  17. Holland, H. D. Why the atmosphere became oxygenated: A proposal. Geochim. Cosmochim. Acta 73, 5241–5255 (2009).

    Article  Google Scholar 

  18. Gaillard, F., Scaillet, B. & Arndt, N. T. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478, 229–232 (2011).

    Google Scholar 

  19. Kump, L. R. & Barley, M. E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007).

    Article  Google Scholar 

  20. Rasmussen, B. & Buick, R. Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia. Geology 27, 115–118 (1999).

    Article  Google Scholar 

  21. Gumsley, A. P. et al. The Hlagothi Complex: The identification of fragments from a Mesoarchaean large igneous province on the Kaapvaal Craton. Lithos 174, 333–348 (2013).

    Article  Google Scholar 

  22. Self, S., Blake, S., Sharma, K., Widdowson, M. & Sephton, S. Sulfur and chlorine in Late Cretaceous Deccan magmas and eruptive gas release. Science 319, 1654–1657 (2008).

    Article  Google Scholar 

  23. Hedenquist, J. W. & Lowenstern, J. B. The role of magmas in the formation of hydrothermal ore deposits. Nature 370, 519–527 (1994).

    Article  Google Scholar 

  24. Phillips, G. N. & Law, J. D. M. Witwatersrand Gold Fields: Geology, Genesis, and Exploration Vol. 13, 439–500 (SEG Reviews, 2000).

    Google Scholar 

  25. Renders, P. J. & Seward, T. M. The stability of hydrosulfido-complexes and sulfido-complexes of Au(I) and Ag(I) at 25 °C. Geochim. Cosmochim. Acta 53, 245–253 (1989).

    Article  Google Scholar 

  26. Tagirov, B. R., Baranova, N. N., Zotov, A. V., Schott, J. & Bannykh, L. N. Experimental determination of the stabilities of Au2S(cr) at 25 °C and Au(HS)2 at 25–250 °C. Geochim. Cosmochim. Acta 70, 3689–3701 (2006).

    Article  Google Scholar 

  27. Akinfiev, N. N. & Zotov, A. V. Thermodynamic description of aqueous species in the system Cu–Ag–Au–S–O–H at temperatures of 0–600 °C and pressures of 1–3000 bar. Geochem. Int. 48, 714–720 (2010).

    Article  Google Scholar 

  28. Simmons, S. F. & Brown, K. L. Gold in magmatic hydrothermal solutions and the rapid formation of a giant ore deposit. Science 314, 288–291 (2006).

    Article  Google Scholar 

  29. Hannah, J. L., Stein, H. J., Markey, R. J. & Scherstén, A. Gold: A Re–Os geochronometer? Geochim. Cosmochim. Acta 68, A773 (2004).

    Article  Google Scholar 

  30. Halevy, I. Production, preservation, and biological processing of mass-independent sulfur isotope fractionation in the Archean surface environment. Proc. Natl Acad. Sci. USA 110, 17644–17649 (2013).

    Article  Google Scholar 

Download references


I thank N. Arndt, T. Driesner, B. M. Eglington, I. Halevy, G. Hall, B. Lehmann, A. Pather, T. Schlegel, T. Wagner, V. Wall and P. Weis for inspiration and help with field observations, and for critical comments on this paper since its first presentation at the 2013 Goldschmidt conference. Supported by ETH Zurich and Swiss National Science Foundation grants 200020-146681 and 200021-146651.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Christoph A. Heinrich.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 390 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heinrich, C. Witwatersrand gold deposits formed by volcanic rain, anoxic rivers and Archaean life. Nature Geosci 8, 206–209 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing