Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Carbonate weathering as a driver of CO2 supersaturation in lakes

Abstract

Most lakes and reservoirs have surface CO2 concentrations that are supersaturated relative to the atmosphere1. The resulting CO2 emissions from lakes represent a substantial contribution to the continental carbon balance2,3,4. Thus, the drivers of CO2 supersaturation in lakes need to be understood to constrain the sensitivity of the land carbon cycle to external perturbations4,5,6. Carbon dioxide supersaturation has generally been attributed to the accumulation of inorganic carbon in lakes where respiration exceeds photosynthesis7,8, but this interpretation has faced challenges9,10,11. Here we report analyses of water chemistry data from a survey of Spanish reservoirs that represent a range of lithologies, using simple metabolic models. We find that, above an alkalinity threshold of 1 mequiv. l−1, CO2 supersaturation in lakes is directly related to carbonate weathering in the watershed. We then evaluate the global distribution of alkalinity in lakes and find that 57% of the surface area occupied by lakes and reservoirs—particularly in tropical and temperate latitudes—has alkalinity exceeding 1 mequiv. l−1. We conclude that lake inputs of dissolved inorganic carbon from carbonate weathering should be considered for the CO2 supersaturation of lakes at both regional and global scales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DIC of lakes controlled by DIC inflow from the watershed and NEP.
Figure 2: Interplay between alkalinity and NEP shaping CO2 supersaturation.
Figure 3: Global distribution of lake alkalinity and potential weathering-related CO2 emissions from lakes.

Similar content being viewed by others

References

  1. Cole, J. J., Caraco, N. F., Kling, G. W. & Kratz, T. K. Carbon dioxide supersaturation in the surface waters of lakes. Science 265, 1568–1570 (1994).

    Article  Google Scholar 

  2. Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    Article  Google Scholar 

  3. Aufdenkampe, A. K. et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 9, 53–60 (2011).

    Article  Google Scholar 

  4. Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geosci. 6, 597–607 (2013).

    Article  Google Scholar 

  5. Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M. & Hess, L. L. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2 . Nature 416, 617–620 (2002).

    Article  Google Scholar 

  6. Luyssaert, S. et al. The European carbon balance. Part 3: Forests. Glob. Change Biol. 16, 1429–1450 (2010).

    Article  Google Scholar 

  7. Cole, J. J., Pace, M. L., Carpenter, S. R. & Kitchell, J. F. Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnol. Oceanogr. 45, 1718–1730 (2000).

    Article  Google Scholar 

  8. Duarte, C. M. & Prairie, Y. T. Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems 8, 862–870 (2005).

    Article  Google Scholar 

  9. Balmer, M. B. & Downing, J. Carbon dioxide concentrations in eutrophic lakes: Undersaturation implies atmospheric uptake. Inland Waters 1, 125–132 (2011).

    Article  Google Scholar 

  10. Mcdonald, C. P., Stets, E. G., Striegl, R. G. & Butman, D. Inorganic carbon loading as a primary driver of dissolved carbon dioxide concentrations in the lakes and reservoirs of the contiguous United States. Glob. Biogeochem. Cycles 27, 285–295 (2013).

    Article  Google Scholar 

  11. Maberly, S. C., Barker, P. A., Stott, A. W. & DeVille, M. M. Catchment productivity controls CO2 emissions from lakes. Nature Clim. Change 3, 391–394 (2013).

    Article  Google Scholar 

  12. Bouillon, S. et al. Contrasting biogeochemical characteristics of the Oubangui River and tributaries (Congo River basin). Sci. Rep. 4, 5402 (2014).

    Article  Google Scholar 

  13. Stets, E. G., Striegl, R. G., Aiken, G. R., Rosenberry, D. O. & Winter, T. C. Hydrologic support of carbon dioxide flux revealed by whole-lake carbon budgets. J. Geophys. Res. 114, G01008 (2009).

    Article  Google Scholar 

  14. López, P., Marcé, R. & Armengol, J. Net heterotrophy and CO2 evasion from a productive calcareous reservoir: Adding complexity to the metabolism-CO2 evasion issue. J. Geophys. Res. 116, G02021 (2011).

    Article  Google Scholar 

  15. Riera, J. L., Jaume, D., de Manuel, J., Morguí, J. A. & Armengol, J. Patterns of variation in the limnology of Spanish reservoirs: A regional study. Limnetica 8, 111–123 (1992).

    Google Scholar 

  16. Duarte, C. M. et al. CO2 emissions from saline lakes: A global estimate of a surprisingly large flux. J. Geophys. Res. 113, G04041 (2008).

    Article  Google Scholar 

  17. Stabel, H. H. Calcite precipitation in Lake Constance: Chemical equilibrium, sedimentation, and nucleation by algae. Limnol. Oceanogr. 31, 1081–1093 (1986).

    Article  Google Scholar 

  18. McConnaughey, T. A. & Whelan, J. F. Calcification generates protons for nutrient and bicarbonate uptake. Earth-Science Rev. 42, 95–117 (1997).

    Article  Google Scholar 

  19. Riebesell, U. et al. Reduced calcification of marine plankton in response to increased atmospheric CO2 . Science 407, 364–367 (2000).

    Google Scholar 

  20. Dittrich, M., Kurz, P. & Wehrli, B. The role of autotrophic picocyanobacteria in calcite precipitation in an oligotrophic lake. Geomicrobiol. J. 21, 45–53 (2004).

    Article  Google Scholar 

  21. Torgersen, T. & Branco, B. Carbon and oxygen dynamics of shallow aquatic systems: Process vectors and bacterial productivity. J. Geophys. Res. 112, G03016 (2007).

    Article  Google Scholar 

  22. Mayorga, E. et al. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436, 538–541 (2005).

    Article  Google Scholar 

  23. Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).

    Article  Google Scholar 

  24. Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).

    Article  Google Scholar 

  25. Barros, N. et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geosci. 4, 593–596 (2011).

    Article  Google Scholar 

  26. Butman, D. & Raymond, P. A. Significant efflux of carbon dioxide from streams and rivers in the United States. Nature Geosci. 4, 839–842 (2011).

    Article  Google Scholar 

  27. Lapierre, J. F., Guillemette, F., Berggren, M. & del Giorgio, P. A. Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems. Nature Commun. 4, 2972 (2013).

    Article  Google Scholar 

  28. Hoellein, T. J., Bruesewitz, D. A. & Richardson, D. C. Revisiting Odum (1956): A synthesis of aquatic ecosystem metabolism. Limnol. Oceanogr. 58, 2089–2100 (2013).

    Article  Google Scholar 

  29. Raymond, P. A., Oh, N-H., Turner, R. E. & Broussard, W. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 451, 449–452 (2008).

    Article  Google Scholar 

  30. Markewitz, D. et al. Control of cation concentrations in stream waters by surface soil processes in an Amazonian watershed. Nature 410, 802–805 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this research was provided by projects CARBONET (Spanish Ministry, CGL201130474C020), and SCARCE (Consolider-Ingenio 2010 CSD2009-00065). We are grateful to M. Koschorreck, N. Catalán, and D. von Schiller for comments on early drafts. This is a contribution of the NETLAKE group (COST Action ES1201).

Author information

Authors and Affiliations

Authors

Contributions

R.M. and B.O. conceived the paper and contributed equally to this work; J.L.R. and J-A.M. obtained the reservoir data during the 1987–1988 survey; R.M. and B.O. analysed the field data and R.M. performed worldwide computations; R.M. and B.O. co-wrote the paper. P.L. assisted in the interpretation of the data; J.A. designed and supervised the nationwide sampling. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Rafael Marcé.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1143 kb)

Supplementary Information

Supplementary Information (XLSX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcé, R., Obrador, B., Morguí, JA. et al. Carbonate weathering as a driver of CO2 supersaturation in lakes. Nature Geosci 8, 107–111 (2015). https://doi.org/10.1038/ngeo2341

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2341

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology