Storage and release of organic carbon from glaciers and ice sheets


Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be larger than climate impacts on other components of the hydrological cycle, and may represent an important flux of organic carbon. A compilation of published data on dissolved organic carbon from glaciers across five continents reveals that mountain and polar glaciers represent a quantitatively important store of organic carbon. The Antarctic Ice Sheet is the repository of most of the roughly 6 petagrams (Pg) of organic carbon stored in glacier ice, but the annual release of glacier organic carbon is dominated by mountain glaciers in the case of dissolved organic carbon and the Greenland Ice Sheet in the case of particulate organic carbon. Climate change contributes to these fluxes: approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate, leading to a cumulative loss of roughly 15 teragrams (Tg) of glacial dissolved organic carbon by 2050 due to climate change — equivalent to about half of the annual flux of dissolved organic carbon from the Amazon River. Thus, glaciers constitute a key link between terrestrial and aquatic carbon fluxes, and will be of increasing importance in land-to-ocean fluxes of organic carbon in glacierized regions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Location of glacier DOC samples classified by type.
Figure 2: Glacier DOC concentrations.
Figure 3: Storage and flux of glacier DOC.


  1. 1

    Gardner, A. S. et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340, 852–857 (2013).

    Article  Google Scholar 

  2. 2

    Radić, V. et al. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Clim. Dynam. 42, 37–58 (2013).

    Article  Google Scholar 

  3. 3

    Hodson, A. et al. Glacial ecosystems. Ecol. Monogr. 78, 41–67 (2008).

    Article  Google Scholar 

  4. 4

    Anesio, A. M. & Laybourn-Parry, J. Glaciers and ice sheets as a biome. Trends Ecol. Evol. 27, 219–225 (2012).

    Article  Google Scholar 

  5. 5

    Stibal, M., Šabacká, M. & Žárský, J. Biological processes on glacier and ice sheet surfaces. Nature Geosci. 5, 771–774 (2012).

    Article  Google Scholar 

  6. 6

    Hood, E. et al. Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462, 1044–1047 (2009).

    Article  Google Scholar 

  7. 7

    Singer, G. A. et al. Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate. Nature Geosci. 5, 710–714 (2012).

    Article  Google Scholar 

  8. 8

    Bhatia, M. P. et al. Organic carbon export from the Greenland ice sheet. Geochim. Cosmochim. Acta 109, 329–344 (2013).

    Article  Google Scholar 

  9. 9

    Bhatia, M. P., Das, S. B., Longnecker, K., Charette, M. A. & Kujawinski, E. B. Molecular characterization of dissolved organic matter associated with the Greenland ice sheet. Geochim. Cosmochim. Acta 74, 3768–3784 (2010).

    Article  Google Scholar 

  10. 10

    Battin, T. J. et al. Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geosci. 1, 95–100 (2008).

    Article  Google Scholar 

  11. 11

    Legrand, M. et al. Major 20th century changes of the content and chemical speciation of organic carbon archived in Alpine ice cores: Implications for the long-term change of organic aerosol over Europe. J. Geophys. Res. Atmos. 118, 3879–3890 (2013).

    Article  Google Scholar 

  12. 12

    Legrand, M. et al. Water-soluble organic carbon in snow and ice deposited at Alpine, Greenland, and Antarctic sites: a critical review of available data and their atmospheric relevance. Clim. Past Discuss. 9, 2357–2399 (2013).

    Article  Google Scholar 

  13. 13

    Foght, J. et al. Culturable bacteria in subglacial sediments and ice from two Houthern Hemisphere glaciers. Microb. Ecol. 47, 329–340 (2004).

    Article  Google Scholar 

  14. 14

    Stibal, M. et al. Methanogenic potential of Arctic and Antarctic subglacial environments with contrasting organic carbon sources. Glob. Change Biol. 18, 3332–3345 (2012).

    Article  Google Scholar 

  15. 15

    Telling, J. et al. Controls on the autochthonous production and respiration of organic matter in cryoconite holes on high Arctic glaciers. J. Geophys. Res. 117, G01017 (2012).

    Article  Google Scholar 

  16. 16

    Stibal, M. et al. Organic matter content and quality in supraglacial debris across the ablation zone of the Greenland ice sheet. Ann. Glaciol. 51, 1–8 (2010).

    Article  Google Scholar 

  17. 17

    Dubnick, A. et al. Characterization of dissolved organic matter (DOM) from glacial environments using total fluorescence spectroscopy and parallel factor analysis. Ann. Glaciol. 51, 111–122 (2010).

    Article  Google Scholar 

  18. 18

    Bliss, A., Hock, R. & Cogley, J. G. A new inventory of mountain glaciers and ice caps for the Antarctic periphery. Ann. Glaciol. 54, 191–199 (2013).

    Article  Google Scholar 

  19. 19

    Priscu, J. C., Christner, B. C., Foreman, C. M. & Royston-Bishop, G. in Encyclopedia of Quaternary Science (eds Elias, S. & Mock, C.) 1156–1167 (Elsevier, 2007).

    Google Scholar 

  20. 20

    Priscu, J. C. & Christner, B. C. in Microbial Diversity and Bioprospecting (ed. Bull, S.) Ch. 13, 130–145 (ASM Press, 2004).

    Google Scholar 

  21. 21

    Ping, C-L. et al. High stocks of soil organic carbon in the North American Arctic region. Nature Geosci. 1, 615–619 (2008).

    Article  Google Scholar 

  22. 22

    Schuur, E. A. G. et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience 58, 701 (2008).

    Article  Google Scholar 

  23. 23

    Striegl, R. G., Aiken, G. R., Dornblaser, M. M., Raymond, P. A. & Wickland, K. P. A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys. Res. Lett. 32, L21413 (2005).

    Article  Google Scholar 

  24. 24

    Bamber, J., van den Broeke, M., Ettema, J., Lenaerts, J. & Rignot, E. Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys. Res. Lett. 39, L19501 (2012).

    Article  Google Scholar 

  25. 25

    Bliss, A., Hock, R. & Radić, V. Global response of glacier runoff to twenty-first century climate change. J. Geophys. Res. Earth Surf. 119, 717–730 (2014).

    Article  Google Scholar 

  26. 26

    Rignot, E. et al. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geosci. 1, 106–110 (2008).

    Article  Google Scholar 

  27. 27

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  28. 28

    Meier, M. F. et al. Glaciers dominate eustatic sea-level rise in the 21st century. Science 317, 1064–1067 (2007).

    Article  Google Scholar 

  29. 29

    Antony, R. et al. Origin and sources of dissolved organic matter in snow on the East Antarctic ice sheet. Environ. Sci. Technol. 48, 6151–6159 (2014).

    Article  Google Scholar 

  30. 30

    Hallet, B., Hunter, L. & Bogen, J. Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications. Glob. Planet. Change 12, 213–235 (1996).

    Article  Google Scholar 

  31. 31

    Tockner, K., Malard, F., Uehlinger, U. & Ward, J. V. Nutrients and organic matter in a glacial river-floodplain system (Val Roseg, Switzerland). Limnol. Oceanogr. 47, 266–277 (2002).

    Article  Google Scholar 

  32. 32

    Dai, M., Yin, Z., Meng, F., Liu, Q. & Cai, W-J. Spatial distribution of riverine DOC inputs to the ocean: an updated global synthesis. Curr. Opin. Environ. Sustain. 4, 170–178 (2012).

    Article  Google Scholar 

  33. 33

    Beusen, A. H. W., Dekkers, A. L. M., Bouwman, A. F., Ludwig, W. & Harrison, J. Estimation of global river transport of sediments and associated particulate C, N, and P. Glob. Biogeochem. Cycles 19, GB4S05 (2005).

    Article  Google Scholar 

  34. 34

    Bianchi, T. S. The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect. Proc. Natl Acad. Sci. USA 108, 19473–19481 (2011).

    Article  Google Scholar 

  35. 35

    Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. & Lenaerts, J. T. M. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 38, L05503 (2011).

    Article  Google Scholar 

  36. 36

    Gardner, A. S. et al. Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature 473, 357–360 (2011).

    Article  Google Scholar 

  37. 37

    Kaser, G., Grosshauser, M. & Marzeion, B. Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl Acad. Sci. USA 107, 20223–20227 (2010).

    Article  Google Scholar 

  38. 38

    Moreira-Turcq, P., Seyler, P., Guyot, J. L. & Etcheber, H. Exportation of organic carbon from the Amazon River and its main tributaries. Hydrol. Process. 17, 1329–1344 (2003).

    Article  Google Scholar 

  39. 39

    Anesio, A. M., Hodson, A. J., Fritz, A., Psenner, R. & Sattler, B. High microbial activity on glaciers: importance to the global carbon cycle. Glob. Change Biol. 15, 955–960 (2009).

    Article  Google Scholar 

  40. 40

    Lavanchy, V. M. H., Gäggeler, H. W., Schotterer, U., Schwikowski, M. & Baltensperger, U. Historical record of carbonaceous particle concentrations from a European high-alpine glacier (Colle Gnifetti, Switzerland). J. Geophys. Res. 104, 21227 (1999).

    Article  Google Scholar 

  41. 41

    Stubbins, A. et al. Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers. Nature Geosci. 5, 198–201 (2012).

    Article  Google Scholar 

  42. 42

    Coynel, A., Seyler, P., Etcheber, H., Meybeck, M. & Orange, D. Spatial and seasonal dynamics of total suspended sediment and organic carbon species in the Congo River. Glob. Biogeochem. Cycles 19, GB4019 (2005).

    Article  Google Scholar 

  43. 43

    Bardgett, R. D. et al. Heterotrophic microbial communities use ancient carbon following glacial retreat. Biol. Lett. 3, 487–490 (2007).

    Article  Google Scholar 

  44. 44

    Hågvar, S. & Ohlson, M. Ancient carbon from a melting glacier gives high 14C age in living pioneer invertebrates. Sci. Rep. 3, 2820 (2013).

    Article  Google Scholar 

  45. 45

    Fellman, J. B. et al. The impact of glacier runoff on the biodegradability and biochemical composition of terrigenous dissolved organic matter in near-shore marine ecosystems. Mar. Chem. 121, 112–122 (2010).

    Article  Google Scholar 

  46. 46

    Radić, V. & Hock, R. Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J. Geophys. Res. 115, F01010 (2010).

    Article  Google Scholar 

  47. 47

    Huybrechts, P. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quat. Sci. Rev. 21, 203–231 (2002).

    Article  Google Scholar 

  48. 48

    Pfeffer, W. T., Harper, J. T. & O'Neel, S. Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321, 1340–1343 (2008).

    Article  Google Scholar 

  49. 49

    Radić, V. & Hock, R. Glaciers in the Earth's hydrological cycle: assessments of glacier mass and runoff changes on global and regional scales. Surv. Geophys. 46, 813–837 (2014).

    Article  Google Scholar 

  50. 50

    O'Neel, S., Hood, E., Arendt, A. & Sass, L. Assessing streamflow sensitivity to variations in glacier mass balance. Climatic Change 123, 329–341 (2014).

    Article  Google Scholar 

Download references


M. Sharp, B. Sattler, A. Dubnick, M. Schwikowski, D. Wagenbach and H. Hoffmann shared unpublished glacier organic carbon data. U. Federer provided TOC data from the Talos Dome ice core. K. Timm produced Fig. 1 and Box 1. M. Gooseff and R. Hood provided photos for Fig. 1. Our work in this area is supported by NSF (OIA-1208927, EAR-0943599) and the DOI Alaska Climate Science Center to E.H. and S.O., FWF START Y420-B17 to T.J.B, and NSF (DEB-1145885/1145932) to E.H., J.B.F., and R.G.M.S.

Author information




E.H., T.J.B., and R.G.M.S. conceived the study. All authors helped with compiling and analysing organic carbon and/or glaciological data and contributed to the writing of the paper.

Corresponding author

Correspondence to Eran Hood.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 263 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hood, E., Battin, T., Fellman, J. et al. Storage and release of organic carbon from glaciers and ice sheets. Nature Geosci 8, 91–96 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing