Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nocturnal loss and daytime source of nitrous acid through reactive uptake and displacement


The nature of daytime sources and night-time sinks of nitrous acid is a key uncertainty in understanding atmospheric oxidation and radical cycling. The accumulation of nitrous acid in the air has been observed to slow down during the night, implying the presence of a night-time sink. In addition, there may be a photochemical source of nitrous acid during the daytime. We used flow tube experiments, measurements of acid displacement efficiencies, and field monitoring of nitrous acid and nitrite concentrations to study the exchange of nitrous acid with soils. Here we show that nitrous acid can react with carbonates or soil at night and subsequently be displaced from soils during the day by air-to-soil transfer of hydrogen chloride and nitric acid, which are generated in the atmosphere photochemically. These processes provide a critical link between the sink of nitrous acid at night and its emission the following day. We conclude that the acid displacement process could contribute a substantial fraction of daytime nitrous acid emissions in numerous environments, including agricultural, urban and vegetated regions, and in any location subject to deposition of soil-derived mineral dust.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic of HONO(g) deposition and release from a surface reservoir.
Figure 2: Uptake of HONO(g) on soil proxies and soil with increasing relative humidity.
Figure 3: Displacement of HONO(g) from reactive substrates by common atmospheric acids.
Figure 4: AIM-IC observations during CalNex 2010 at Bakersfield, California.


  1. 1

    Perner, D. & Platt, U. Detection of nitrous acid in the atmosphere by differential optical absorption. Geophys. Res. Lett. 6, 917–920 (1979).

    Article  Google Scholar 

  2. 2

    Kurtenbach, R. et al. Investigations of emission and heterogeneous formation of HONO in a road traffic tunnel. Atmos. Environ. 35, 3385–3394 (2001).

    Article  Google Scholar 

  3. 3

    Aubin, D. G. & Abbatt, J. P. D. Interaction of NO2 with hydrocarbon soot: Focus on HONO yield, surface modification and mechanism. J. Phys. Chem. A 111, 6263–6273 (2007).

    Article  Google Scholar 

  4. 4

    Finlayson-Pitts, B. J., Wingen, L. M., Sumner, A. L., Syomin, D. & Ramazan, K. A. The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: An integrated mechanism. Phys. Chem. Chem. Phys. 5, 223–242 (2003).

    Article  Google Scholar 

  5. 5

    Stutz, J., Alicke, B. & Neftel, A. Nitrous acid formation in the urban atmosphere: Gradient measurements of NO2 and HONO over grass in Milan, Italy. J. Geophys. Res. 107, 8192 (2002).

    Article  Google Scholar 

  6. 6

    Elshorbany, Y. F., Steil, B., Brühl, C. & Lelieveld, J. Impact of HONO on global atmospheric chemistry calculated with an empirical parameterization in the EMAC model. Atmos. Chem. Phys. 12, 9977–10000 (2012).

    Article  Google Scholar 

  7. 7

    Hofzumahaus, A. et al. Amplified trace gas removal in the troposphere. Science 324, 1702–1704 (2009).

    Article  Google Scholar 

  8. 8

    Wong, K. W. et al. Daytime HONO vertical gradients during SHARP 2009 in Houston, TX. Atmos. Chem. Phys. 12, 635–652 (2012).

    Article  Google Scholar 

  9. 9

    Zhou, X. et al. Nitric acid photolysis on forest canopy surface as a source for tropospheric nitrous acid. Nature Geosci. 4, 440–443 (2011).

    Article  Google Scholar 

  10. 10

    Stemmler, K., Ammann, M., Donders, C., Kleffmann, J. & George, C. Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid. Nature 440, 195–198 (2006).

    Article  Google Scholar 

  11. 11

    Ammann, M. et al. Heterogeneous production of nitrous acid on soot in polluted air masses. Nature 395, 157–160 (1998).

    Article  Google Scholar 

  12. 12

    Vlasenko, A. et al. Effect of humidity on nitric acid uptake to mineral dust aerosol particles. Atmos. Chem. Phys. 6, 2147–2160 (2006).

    Article  Google Scholar 

  13. 13

    Sullivan, R. C. et al. Mineral dust is a sink for chlorine in the marine boundary layer. Atmos. Environ. 41, 7166–7179 (2007).

    Article  Google Scholar 

  14. 14

    Al-Hosney, H. A., Carlos-Cuellar, S., Baltrusaitis, J. & Grassian, V. H. Heterogeneous uptake and reactivity of formic acid on calcium carbonate particles: A Knudsen cell reactor, FTIR and SEM study. Phys. Chem. Chem. Phys. 7, 3587–3595 (2005).

    Article  Google Scholar 

  15. 15

    Preszler Prince, A., Kleiber, P., Grassian, V. H. & Young, M. A. Reactive uptake of acetic acid on calcite and nitric acid reacted calcite aerosol in an environmental reaction chamber. Phys. Chem. Chem. Phys. 10, 142–152 (2008).

    Article  Google Scholar 

  16. 16

    Conklin, A. R. Introduction to Soil Chemistry: Analysis and Instrumentation 71–90 (Wiley, 2005).

    Book  Google Scholar 

  17. 17

    Oswald, R. et al. HONO emissions from soil bacteria as a major source of atmospheric reactive nitrogen. Science 341, 1233–1235 (2013).

    Article  Google Scholar 

  18. 18

    Brown, S. S. et al. Nitrogen, Aerosol Composition and Halogens on a Tall Tower (NACHTT): Overview of a wintertime air chemistry field study in the front range urban corridor of Colorado. J. Geophys. Res. 118, 8067–8085 (2013).

    Google Scholar 

  19. 19

    Meng, Z., Seinfeld, J. H., Saxena, P. & Kim, Y. P. Atmospheric gas-aerosol equilibrium: IV. Thermodynamics of carbonates. Aerosol Sci. Technol. 23, 131–154 (1995).

    Article  Google Scholar 

  20. 20

    Su, H. et al. Soil nitrite as a source of atmospheric HONO and OH radicals. Science 333, 1616–1618 (2011).

    Article  Google Scholar 

  21. 21

    Taira, M. & Kanda, Y. Continuous generation system for low-concentration gaseous nitrous acid. Anal. Chem. 62, 630–633 (1990).

    Article  Google Scholar 

  22. 22

    Febo, A., Perrino, C., Gherardi, M. & Sparapani, R. Evaluation of a high-purity and high-stability continuous generation system for nitrous acid. Environ. Sci. Technol. 29, 2390–2395 (1995).

    Article  Google Scholar 

  23. 23

    VandenBoer, T. C. et al. Understanding the role of the ground surface in HONO vertical structure: High resolution vertical profiles during NACHTT-11. J. Geophys. Res. 118, 10155–10171 (2013).

    Google Scholar 

  24. 24

    VandenBoer, T. C. et al. Evidence for a nitrous acid (HONO) reservoir at the ground surface in Bakersfield, CA during CalNex 2010. J. Geophys. Res. Atmos. 119, 9093–9106 (2014).

    Article  Google Scholar 

  25. 25

    Ren, X. et al. A relaxed eddy accumulation system for measuring vertical fluxes of nitrous acid. Atmos. Meas. Tech. 4, 2093–2103 (2011).

    Article  Google Scholar 

  26. 26

    Sörgel, M. et al. Quantification of the unknown HONO daytime source and its relation to NO2 . Atmos. Chem. Phys. 11, 10433–10447 (2011).

    Article  Google Scholar 

  27. 27

    Zhang, N. et al. Aircraft measurement of HONO vertical profiles over a forested region. Geophys. Res. Lett. 36, L15820 (2009).

    Google Scholar 

  28. 28

    Wong, K. W., Oh, H-J., Lefer, B., Rappenglück, B. & Stutz, J. Vertical profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX. Atmos. Chem. Phys. 11, 3595–3609 (2011).

    Article  Google Scholar 

  29. 29

    He, Y., Zhou, X., Hou, J., Gao, H. & Bertman, S. B. Importance of dew in controlling the air-surface exchange of HONO in rural forested environments. Geophys. Res. Lett. 33, L02813 (2006).

    Google Scholar 

  30. 30

    Donaldson, M. A., Berke, A. E. & Raff, J. D. Uptake of gas phase nitrous acid onto boundary layer soil surfaces. Environ. Sci. Technol. 48, 375–383 (2014).

    Article  Google Scholar 

  31. 31

    El Zein, A. & Bedjanian, Y. Reactive uptake of HONO to TiO2 surface: “Dark” reaction. J. Phys. Chem. A 116, 3665–3672 (2012).

    Article  Google Scholar 

  32. 32

    Romanias, M. N., El Zein, A. & Bedjanian, Y. Reactive uptake of HONO on aluminium oxide surface. J. Photochem. Photobiol. A 250, 50–57 (2012).

    Article  Google Scholar 

  33. 33

    El Zein, A., Romanias, M. N. & Bedjanian, Y. Kinetics and products of heterogeneous reaction of HONO with Fe2O3 and Arizona Test Dust. Environ. Sci. Technol. 47, 6325–6331 (2013).

    Article  Google Scholar 

  34. 34

    Monge, M. E. et al. Light changes the atmospheric reactivity of soot. Proc. Natl Acad. Sci. USA 107, 6605–6609 (2010).

    Article  Google Scholar 

  35. 35

    Stemmler, K. et al. Light induced conversion of nitrogen dioxide into nitrous acid on submicron humic acid aerosol. Atmos. Chem. Phys. 7, 4237–4248 (2007).

    Article  Google Scholar 

  36. 36

    Ammar, R., Monge, M. E., George, C. & D’Anna, B. Photoenhanced NO2 loss on simulated urban grime. ChemPhysChem 11, 3956–3961 (2010).

    Article  Google Scholar 

  37. 37

    Beine, H. J. et al. HONO emissions from snow surfaces. Environ. Res. Lett. 045005 (2008).

  38. 38

    Brigante, M., Cazoir, D., D’Anna, B., George, C. & Donaldson, D. J. Photoenhanced uptake of NO2 by pyrene solid films. J. Phys. Chem. A 112, 9503–9508 (2008).

    Article  Google Scholar 

  39. 39

    George, C., Strekowski, R., Kleffmann, J., Stemmler, K. & Ammann, M. Photoenhanced uptake of gaseous NO2 on solid organic compounds: A photochemical source of HONO? Faraday Discuss. 130, 195–210 (2005).

    Article  Google Scholar 

  40. 40

    Ndour, M. et al. Photoenhanced uptake of NO2 on mineral dust: Laboratory experiments and model simulations. Geophys. Res. Lett. 35, L05812 (2008).

    Article  Google Scholar 

  41. 41

    Zhang, N. et al. Measurements of ambient HONO concentrations and vertical HONO flux above a northern Michigan forest canopy. Atmos. Chem. Phys. 12, 8285–8296 (2012).

    Article  Google Scholar 

  42. 42

    Singh, H. B. et al. Reactive nitrogen distribution and partitioning in the North American troposphere and lowermost stratosphere. J. Geophys. Res. 112, D12S04 (2007).

    Article  Google Scholar 

  43. 43

    Roberts, J. M. et al. Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): Application to biomass burning emissions. Atmos. Meas. Tech. 3, 981–990 (2010).

    Article  Google Scholar 

  44. 44

    Wagner, N. L. et al. Diode laser-based cavity ring-down instrument for NO3, N2O5, NO, NO2 and O3 from aircraft. Atmos. Meas. Tech. 4, 1227–1240 (2011).

    Article  Google Scholar 

  45. 45

    Markovic, M. Z., VandenBoer, T. C. & Murphy, J. G. Characterization and optimization of an online system for the simultaneous measurement of atmospheric water-soluble constituents in the gas and particle phases. J. Environ. Monit. 14, 1872–1884 (2012).

    Article  Google Scholar 

  46. 46

    Veres, P. et al. Evidence of rapid production of organic acids in an urban air mass. Geophys. Res. Lett. 38, L17807 (2011).

    Article  Google Scholar 

Download references


The authors thank N. L. Wagner for experimental assistance and participants of the CalNex and NACHTT field campaigns for support, particularly X. Ren for the measured HONO(g) flux data. T.C.V. and C.J.Y. acknowledge fellowships from the Natural Science and Engineering Research Council of Canada.

Author information




T.C.V. designed and performed the flow tube experiments with contributions from C.J.Y. and R.K.T. T.C.V. and M.Z.M. collected the HONO and particle nitrite observations at CalNex under the guidance of J.G.M. T.C.V. and C.J.Y. prepared this manuscript under the guidance of J.M.R., S.S.B. and J.G.M.

Corresponding author

Correspondence to Jennifer G. Murphy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2384 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

VandenBoer, T., Young, C., Talukdar, R. et al. Nocturnal loss and daytime source of nitrous acid through reactive uptake and displacement. Nature Geosci 8, 55–60 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing